
-A182 931 THE AUTOMATED PROGRAMMING OF ELECTRONIC DISPLAYSCU) 11
SOFTWARE CONSULTING SPECIALIST INC FORT MAYNE IN
R W HASKER ET AL SEP 86 AFURL-TR-86-3846

UNCLASSIFIED F33615-85-C-36i7 F/G t4/2EIIIIIIEEIIE
EhIE~lElllllhE
Iflflflflflfllllll
ElllllllIIhlhE
lllllllEllElllI
EllhllllElh~lE
IEEE.,l_

l

11111- n ~ 2o

MICROCOPY RESOLUTION TEST CHART

fi WIE COPY

AFWAL-TR-86-3046

THE AUTOMATED PROGRAMMING OF ELECTRONIC DISPLAYS

R. W. Hasker
J. S. Edmondson
M. R. Fritsch

Software Consulting Specialists, Inc.
(P. 0. Box 15367

O Fort Wayne, IN 46885

00
V September 1986

S Final Report for Period July 1985 - December 1985

Approved for public release; distribution is unlimited

ELE.CTE D

JUL02 19870

FLIGHT DYNAMICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

87 6 29 005

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the govern-
ment may have formulated, furnished, or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implica-
tion or otherwise as in any manner licensing the holder or any other person
or corporation, or conveying any rights or permission to manufacture use,
or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign
nations.

This technical report has been reviewed and is approved for
publication.

JAMES A. UPHAUS,-JR. RONALD 1. MORISHIGE, Lt. o , USAF
Electronics Engineer Chief, Crew System Deve ent Branch
Crew Systems Development Branch Flight Dynamics Division

FOR THE COMMANDER

RICHARD A. BOROWSKI, Lt Col, USAF
Chief, Flight Control Division

If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organization please notify
AFWAL/FIGR, W-PAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

UNCLASSIFIED
stc atm? y Ck a £l ic& As'o" Of 1.11 Pace to%-s no.. D*.

REPOR DOCMENTTIONPAGEREAD INSTR~UCTIONS______ REPORT____________________PAGE_ BEFORECONIPLETINC._FORMU
I *(poxvAwmt IUK GCVT ACCSof n~lo.m I A(C~CCtlCATALOG Ubata

AFWAL-TR 86-3046 tl

4. '1 f-d1-6000.) ?YP(C 00 MfPoQT a PCIP0,1O COwcato

THE AUTOMATED PROGRAMMING OF ELECTRONIC Final Report
DISPLAYS 1 July 1985 - 1 Dec 1985

0PCWVPaOM@CeC00. atpooky MNSA

1. AV~mk. 0. co"I'laCT OR Goan.? bumov t.j

R. W. Hasker
J. S. Edmondson F33615-85-C-3617
M. R. Fritsch

I., PPCNINC CWGAMeRAT1mOW "we &N 05 111 0 PRO~l S AGRAM CL(CWfT.P^OJ(CV. TASK

Software Consulting Specialists, Inc. ;Ms CA 01 Wol WUNSCAS

P. 0. Box 15367 62201F
Fort Wayne, IN 46885 24030476

of. COuNaTMgUL0O OFC0A~ AND A0009111is Is. At P0*1 CATC

Flight Dnamics Laboratory (AFWAL/FIGR) Sep tember 1986
Air Force Wright Aeronautical Laboratories IS. Of VAGIS

Air Force Systems Command, WPAFB, OH 45433 87
14. MONITORING AGEISCY NMEW & A0ftgIlI dli.,.ve f-e Coomeeliftf @9itee) 15. SCCUAIt? CL ASS. lo@&$ ele .r.uwj

Uncl assified

ISO. OICLASIPfCAeTeIO0ONuGRAO.G

14. DISRIOUION SAIMC.?(o I. xv~ Awo)

Approved for public release; distribution is unlimited

I?. coolvmalou" STATIEMNT t.0 fl. .9106in* foomo XoI 5 f~I

of IUFPL(.f.?AQY wave&

go. oUK? .0406 rCeooe_* oo eo..* oeoo 010.Ee..my *IDp U

Video Display, Aircraft Display, Electronic Display, Real-time Display,
Automated Programming, Graphics

~A study was performed to determine the system requirements and
top-level design for a system to support the design and automated
programming of electronic displays for use in real-time environments.
A hierarchy of levels was defined to support the creation and
maintenance of display designs. Different attributes and capabilities
were attached to each level of the hierarchy. The system was partitioned

(continued)

DO 1473 toIYonooo May soVA is o~sIot UNCLASSIFIED
sCumY'v CLAsIICAIOU1 or TWO$ pace too- 0* E..

UNCLASSIFIED
I ICUm,?,T CLA5IIC A 110 OF IS$% PAO (gW% De.")

"'- intoan editor, animator, and code generator to support the creation,
test, and compilation of display designs. The requirements for the major
functions and data are discussed. A possible implementation is described
which uses as much nondevelopmental hardware and software as possible to
reduce the system's development time and total cost. Use of Ada to
formally describe the display design and the use of computer-aided design

-Ge-packages to edit display designs is discussed. The system feasi-
bility is discussed and recommendations for system development are made.

Accession For

DTIC TAB

D1.trlbloao

Avalablity Codes

iVWi1_id/*r -7

D1st Special

UNCLASSI FIED
suu~wCLASSIVICAVII014 o ?"S~ PA49eW%-.£.e..s

Table of Contents

Section Page_

I Introduction 1

1.1 The Purpose . . o . . o o . o 1

1.3 The Approach.......... 3

2 System Description . .o # o . o 5

2.1 A Brief Description o . o . . . o . . . o o . * . o 6

2.2 System Partitioning . . o o o o . o . . . o o o o 6
2.3 Data Requirements & . * o . o . . . o . 9

2.3.1. Display Design Requirements 9
2.3.1.1 The Display Design Hierarchy . . * 9

2.3.1.2.1 Attributes . . o o . . o 15

2.3.1.3 Segments . o 16
2.3.1.3.1 Dynamic Controls o o . o . . o . . 18

2.3.1.4 Modules . . o 24

2.3.2 Formal Display Description Requirements . o . o 25
2.3o3 Executable Display Description Requirements o . . o . o 26
2.3o4. Library Requirements . . . 9 o o . . . 26
2.3.5 Test Data Requirements 0 * 0 . 27

2.3.6 Target Specific Code Requirements . o o . o o . 27
2.4 Process Requirements o o o o o o . 28

2.4.1 Editor Requirements * . . o * . . o . . 28
2o4.1.1 General Editing Capabilities 28
2.4.1.2 Default Values o . . e . o o o . 30

2.4.1.2.1 Default Attribute Values . . . o o 30
2.4.1.2.2 Default Dynamic Control Values . . 31

2.4.2 Animator Requirements . . . 0 0 . . . 0 0 0 0 31

2.4.3 Code Generator Requirements . . . 0 0, . 32
2.5 Hardware Requirements o * * . . * * o . . . o . * . ,, . . 33

2.5.1 Input Device Requirements . 0 . 0 0 0 . . 34

2.5.2 Graphics Terminal Requirements o o . . o . . . 0 . . 35

2.5o3 Hard-copy Printer Requirements 35

2.5.4 Host Computer Requirements o o o . . . o o o . . * . . 35
2.5o5 Target Display Device Requirements o . o o . o o . . o 35

2.6 System Usage Requirements o o o o * o . . o o . 36

2.6.1 Overview o . 0 0 0 . . 0 . . 0 0 0 36

2.6o2 General Usage Requirements . . o o 36
2.6o3 Using the Editor . o . . o . . o o o o 37

2.6o4 Using the Code Generator . o o 37

2.7 System Expansibility Requirements . o e o o . . * . o . 38

3 System Implementation o . o * . o * o o o o o 39

3.1 The Problems of Implementation o . o 0 39

Mot. Current Technology and Its Limitations o . . 40
3.1.2 Circumventing These Limitations o . . . 42

iii

Table of Contents (continues)

3.1.2.1 Use of Hardware 42
3.1.2.2 Reduction of Requirements 43

3.1.3 System Implementation Partitioning 44
3.2 Data Implementation 44

3.2.1 Display Design Implementation 44
3.2.2 Formal Display Description Implementation 45
3.2.3 Executable Display Description Implementation 47
3.2.4 Library Implementation 47

3.2.5 Test Data Implementation 47
3.2.6 Target-Specific Code Implementation 48

3.3 Process Implementation . .. * 48
3.3.1 Editor Implementation 49

3.3.1.1 The Graphics Editor 49
3.3.1.2 The Dynamics Editor 52
3.3.1.3 The Translator 53

3.3.2 Animator Implementation * 53
3.3.2.1 The Animation Compiler 54
3.3.2.2 The Animation Processor 54

3.3.3 Code Generator Implementation 55

3.3.3.1 The Target-Specific Compiler 55
3.3.3.2 The Target-Specific Linker 56

3.4 Hardware Implementation 56
3.4.1 Input Device Implementation 57
3.4.2 Output Device Implementation 58

3.4.2.1 Hard-copy Output Device Implementation . . . 59
3.4.2.2 Graphics Terminal Implementation 59

3.4.3 Host Computer Implementation 60
3.5 A Brief Description of System Implementation 61

4 Conclusions and Recommendations . 0 0 62

APPENDIX A GLOSSARY OF TECHNICAL TERMS 63

APPENDIX B DETAILED OPERATIONAL SCENARIO: CREATING AN EXAMPLE DISPLAY 68

B.1 Introduction . 68

B.2 Sketching the Display. 68
B.3 D0termining the Display Parameters 68
B.4 Partitioning the Design 69
B.5 Tht. Gauge Module 69

B.5.1 Segment 1.0 70
B.5.2 Segment 1.1 0 . . 9 71
B.5.3 Segment 1.2 0 0 71
B.5.4 Segment 1.3 . 72

B.6 The Top Level Module 72

B.6.1 Segment 1.0 72
B.6.2 Segment 1.1 . 72

iv

Table of Contents (concluded)

B .6.3 Segment 1.2 73

B .6.4 Segment 1.3 73

B .7 Conclusion. 73

APPENDIX C COMPUTER-AIDED DESIGN PACKAGE AND HARDWARE SURVEY RESULTS. 74

C .1 Introduction............ 74

C .1.1 The Hardware 74
C .1.2 The Software . 74

C .2 The Survey . . . o..... oo.. 75

C.2.1 Graphics Terminals o oo . o 76
C.2.2 Host Computers........... 76
C.2.3 Other CAD Package o . o o o o . . o o . . o . 76

C .3 Conclusion o. o. * . .. o. . .. 0.. 76

APPENDIX DAN ASSESSMENT OF GRADS o...o o.oo.*. . .. 77

D .1 Introduction . . o . . o . o . . o 0 . . . 0 . . 0 0 0 . 77

D.2 A Description of GRADS o . o o . . . o 77
D.3 The Advantages of GRADS o . o o . . o * o . 78

D.3.1 Similar Alternatives o . o . . o . o o . o . 78

D.4 The Disadvantages of GRADS . o o . . o . o o . o . . o . . . 79
D .5 Conclusion o..oo.. o. 79

Iv
..... V

-. - rTrv~'tn~t~r..Nwrrns u - a~.

Table of Figures
Figure Title Page

1-1 The Display Environment . 2
1-2 The Current Process for Creating Displays 3

2-1 The Proposed Process for Creating Displays. 5
2-2 The System Partitioning 7
2-3 The Display Design Hierarchy 10
2-4l Characteristics Associated with Hierarchy Levels 10
2-5 A Simple Display.. 12
2-6 The Structure of the Simple Display Using the Hierarchy 13
2-7 The Intersection of Clipping Boundaries17
2-8 The Segent Nubering System18
2-9 The Priorities of Segments19
2-10 The Cumulative and Nonoommutative Nature of Transformations 21
2-11 The Use ofUser-specified Priorities..22

3-1 The Editor Subsystem Partitioning 419

3-2 The Aniator Subsystem Partitioning 541
3-3 The Code Generator Subsystem Partitioning 56

B-1 The Fluid Status Display69

Vi

1 Introduction

1.1 The Purpose

This report documents a study made to determine the requirements for and
the feasibility of a system deiigned to automate the programming of electronic
graphic displays which respond to real-time inputs. It is directed at those
responsible for designing such displays. This study was performed by Software
Consulting Specialists, Inc., Fort Wayne, Indiana, for the Air Force Wright
Aeronautical Laboratories, Flight Dynamics Laboratory at Wright-Patterson Air
Force Base under contract number F33615-85-C-3617 and project number 24030476.

1.2 The Need

Complex graphics displays that gather and display rapidly changing infor-
mation are seeing increased use in time-critical environments. The ability of
these displays to efficiently present large amounts of information makes them
ideal in situations that require an operator to quickly assimilate and act on
real-time data. Information that would otherwise have to be presented in
numerical form or on dials and gauges can, via a multi-purpose display, be
shown as a graph, drawn on a diagram, overlaid on a map, or displayed in a
three-dimensional scene.

It is the responsibility of a graphics designer to select the best method
of presenting this information on the display. The display design process is
made difficult, however, by the large amount of time currently needed for the
designer to convert a display concept into the final product--vith the assis-
tance of a programmer. The designer gets no immediate feedback about the dis-
play appearance or operation. Since the display will move and change in
response to real-time inputs, the final operation of the display design is of-
ten never seen until it is implemented in the target display device, perhaps
months later. The evaluation and improvement of display designs at this late
stage is inefficient and costly. Thus, many designs are never optimized because
of the time and cost involved. What is needed is a system that allows a
display designer to interactively construct and modify display designs, test
their operation using simulated real-time inputs, and then translate this
design into the necessary code(*) to run the target display device.

* Underlined words are defined in the Glossary of Technical Terms, Appendix

A.

-1-

D ata- l Target
Acquisition Display

S Computer Device

Sensor Display Image

Data Parameters

Figure 1-1 The Display Environment

The environment for a typical target display device (as shown in Figure
1-1) is as follows: a data-acquisition computer gathers data from sensors and
other subsystems and transmits the display parameters to a graphics device.
The graphics device then draws an image on the sarin which reflects the
values of these parameters. The graphic image can present the information in
a variety of formats, including representations of instrument panels, symbolic
schematics showing the state of the environment, and views of the outside
world in both two and three dimensions.

The current process of creating display designs is illustrated in Figure
1-2. It is very time consuming, involving both a designer and a programmer
working in series. The designer first draws a rough sketch of each display to
be created. The sketch is refined into a drawing which is given to a computer
programmer along with the designer's explanation of how the display should
operate. The programmer writes a computer program for the target device's
microprocessor which will make the electronic screen display the drawing.
This computer program is transferred to the target display system hardware in
the targe enviromet or an appropriate simulator. The designer must then
evaluate the actual display in this environment. Further refinements are
given to the programmer who then does the necessary reprogramming. This
process is repeated until the display is acceptable to the designer or until
available time and funds are exhausted.

A primary problem with this display design process is the lack of
communication between the designer and the programmer: the designer's sketch
ia too informal to ensure that the programmer's product will be correct. As a
consequence of the inexactness of the drawing, some components in the final
display will likely be shaped or placed incorrectly. Also, it is very
difficult to show the movements of the various display components on the
sketch. When the programmer does not fully understand the designer, he will
often make a reasonable but not necessarily correct guess at what is desired.
Since the programmer is rarely an expert in designing optimal displays, he
often needs advice from designers and other programmers.

-2-

~Ideas / Sketch

Designer Display Modifications Programmer

Target
Displayl
Device

Figure 1-2 The Current Process for Creating Displays

If the communication problem were solved by improving the interface
between the designer and the programmer, other problems would still remain.
The designer must wait for the programmer to complete the implementation
before he can begin to evaluate the design. It must be possible to rapidly
iterate between designing and evaluating. This would allow the designer to
maximize his creativity by minimizing the interruptions in his flow of
thought. Also, programmers must repetitively re-solve the same electronic and
programming problems every time a new display device technology is used.
These side issues divert resources from the main design effort.

Anyone confronted with creating displays for real-time environments must
deal with the above problems. Large amounts of time and money are spent each
year, in both the government and private sectors, producing graphic display
designs. A system which could substantially improve the efficiency of
producing these displays would result in substantial savings for its users.
Software Consulting Specialists, Inc. has performed this study to determine
the requirements for and the feasibility of a system designed to support the
design and automated programming of these electronic graphic displays.
Whenever it is important to minimize time and funds required to create new
graphic displays, this system will be a valuable tool to help display
designers accomplish their goal.

1.3 The Approach

The requirements for this system and a top level design were completed
using a top-down approach. The system described in this report is not
configured for any particular hardware or software. It is rather an ideal,
implementation-independent system defined to meet the needs. The detailed

-3-

system design must wait until the next phase of this effort, at which time all
nondevelopmental hardware and software will be acquired and any gaps filled
with custom hardware and software. The actual implementation of the system
may result in the temporary exclusion of several system requirements due to
current technological limitations. These can be added as the development of
new technology permits.

We performed the following system specification steps:

o Define the generic system requirements, which include
functional, performance, and operational requirements;

o Define the operational use of the system;
o Prepare a top level design of the system;
o Briefly d-termine the availability and suitability of existing

hardware and software components; and
o Determine where custom components will probably be needed to

produce a complete system.

In accomplishing the above, we kept in mind several key guidelines which
apply to the development of any major system. Foremost is that the system
requirements are defined by the user and the system designer, rather than by
the capabilities of current technology. The system should be minimal; no
capabilities should exist which do not fit the need. The system must also be
modular to minimize maintenance costs. The system must be open ended to allow

the addition of new requirements with a minimum impact on the design.
Finally, as much commercially available equipment as possible must be used to
reduce the development time and cost.

We present our findings in the following sections and appendices.

Section 2 specifies the requirements for an ideal system based on the need.
Section 3 explains which features of the ideal system are unsupported by the
current technology and presents a possible implementation based on the reduced
requirements. Section 4 presents our conclusions. Appendix A is a glossary
of many of the technical terms used in the report. Appendix B presents a
sample design session. Appendix C presents the results of a hardware and
software survey of possible nondevelopmental items. And Appendix D assesses
the use of GRADS (Graphics Real-Time Application Display Support) in the
implemented system.

1
- V- t -

2 System Description

A new Z for creating display is proposed to fill the above needs.
This process is illustrated in Figure 2-1. The .enajn first creates a
formal description of his dis~la design. The designer then tests the display

* design by putting it into motion. Finally, the executable computer program
for a particular t d device is created by a code generator. This
section of the report explains the process in detail.

Formal Tre

Design Deipt iTonge
- - Disala

Executable
Display

eas/ Description

Dsg- Test Generate

Displaqj Code

Evaluation

Figure 2-1 The Proposed Process for Creating Displays

This section is divided into the following seven subsections:

o A Brief Description,
o System Partitioning,
o Data Requirements,
o Process Requirements,
o Hardware Requirements,
o System Usage Requirements, and
o System Expansibility Requirements.

The brief description overviews the entire system, breaking it into discrete
components and describing how they interface with each other. The next four
sections cover in detail the requirements for the components and interfaces
mentioned in the brief description. The next section explains how the system
will be used as a whole and as the various parts. The last section specifies
the areas in which the system should be expansible.

-5-

2.1 A Brief Description

The system will support the design of graphic information presented on
electronic displays. First the design is entered into the system using a
graphics terminal. Next the movements and changes in response to inut daa
are tested. Finally, the code which implements the design on the target
display device is automatically generated.

In the design phase, the display designer will use graphic entities such
as lines, circles, solids, or text to create pieces of the display design
known as 22Sin£ta. He will assign aZtributep and dynamic controls to the
segments, defining how and where they are displayed on the screen as a result
of the various ral_± system inputs. Segments may in turn be nested in
other segments which move and change in relation to one another to form
modules which make up the complete display design. These display designs, and
portions thereof, may be stored in libraries for reuse. Throughout this
phase, the designer will be supported by powerful editors which present the
possible choices at each step--an environment optimized for the intermittent

The output of the design phase will be the L1rMa1 d.a~lay dam.rinRtin.
This formal description will be the basis for all other operations of the
system. It will be totally comprehensive and unambiguous. It will be in a
form such that a M r~ramnr may manually write the necessary code to implement
the design on the target graphics hardware without needing any other
information about the display design.

In the test phase, the designer will use simulated input data to animate
the display design on the screen. This animation process will transform the
formal display description into a sequence of rapidly changing frames. The
designer will be able to specify screen U data rates from frame-by-frame up to
full speed, allowing him to identify such problems as incorrect spacing of
elements or distracting use of color. If a fault is discovered, the display
design can be modified and retested repeatedly.

After the display design is found to be acceptable, the formal display

description will be transformed into the ecable ALA91M description which
uses the target hardware's insruion M& to generate the images on the
target display device. This is the code generation phase. The transformation
may be done either manually by a programmer or automatically by the system.

2.2 System Partitioning

Figure 2-2 shows how the system may be best partitioned into major
components to provide the needed capabilities. The notational convention used
is as follows: closed boxes represent physical devices; open boxes represent
data; circles represent processes which manipulate or change data; double
circles represent persons interfacing with the system; and directed arrows
indicate the flow of information from the sources of data to their
destinations.

-6-

(I
S Input Graphics

L Devices
Terminal

Animator

-- Target
Speci-fic Code Execuitable

Foma Displa
LibrarD pescription

I , Code ,
-- Generator

TargetFoma Oisplayj DisplayDescription Device

Figure 2-2 The System Partitioning

The data consist of the formal display description, the test data, the
library of display components, the target-specific code, and the executable
display description. The formal display description is a comprehensive and
unambiguous description of the appearance of the final display. The -teatAatA
are used to vary the display in such a manner as to allow the designer to
evaluate the display design. The target-specific code is written by the
programmer to support the creation of the executable display description. The
zaxaJtLRJin ALasla descrpton is the executable program which may be run on
the target display device.

The processes consist of the editor, the animator, and the code
generator. The editgr allows the designer to create the display design. The
ha&nMtor allows the designer to evaluate the design by seeing it change on the

-7-

screen in real time. The £." generator automatically produces the program
which will run on the target display device.

The physical devices consist of the input devices, the graphics terminal,
and the target display device. The input devices allow the designer to give
commands to the system. The gra~his terminal allows the designer to observe
the effects of his commands and to view the display design. The target
display device is the equipment which produces the display in the real-time
environment. Two other physical devices are not shown to simplify the
drawing: the host computer on which the system is run and a hard-copy
printer.

The persons involved in the creation of a display design include the
designer and the programmer. The designer is the person with expertise in
presenting information to the pilot or display viewer. His strengths are in
human factors considerations, not in programming. He is responsible for
designing and evaluating displays. Often, others without human factors
expertise fill the role of the display designer. Some are responsible for
building the target devices and wish to quickly design a display which will
test various aspects of the device. For them, optimal displays are those
which stretch the capabilities of the hardware. Rapid iterations may be
needed to find the limits of a particular device. Other people who need to
have input into the display design include representative display viewers who
will work with the end product and programmers who can suggest improvements
which allow more efficient generation of displays. In the context of
designing displays, we will mention only the designer with the understanding
that many people with a variety of backgrounds may be involved.

The Rro r-mmer is a software engineer with at least an associate degree
in computer science or equivalent experience. He may, but not necessarily,
have a background in computer graphics. He is responsible for writing the
subprograms which gather data from the sensors and other computers,
subprograms which actually control individual pixels on the target device, and
subprograms which define custom entities. These will be explained in detail
below.

The system partitioning given in Figure 2-2 closely parallels the

creation of display designs as described above. Each piece fulfills a need
for creation of a particular types of data. The need for an unambiguous
specification of the display is fulfilled by the formal display description,
and the editor's sole purpose is to facilitate the creation of this formal
description. The need for data specifying any necessary modifications in the
display design is fulfilled by the moving images presented on the graphics
terminal. The need for executable code running in the target display device
is answered by the executable display description. Experience in software
engineering has shown that when examination of the inputs and outputs of the
system--the data--precedes examination of the processes, the final system is
much more likely to fill the need.

The system partitioning is in terms of the functionality of each piece.
It is an abstraction of the system that does not necessarily represent
different programs or computers communicating to one another. It shows what
components are needed in the implemented system at a high level in order to
provide a solution to the problems of programming target display devices.

-8-

2.3 Data Requirements

One item of data is prevalent throughout the system: the display design.
As mentioned in Section 1, the "display" is the time-varying pictorial mapping
of information onto the target device screen. Specifically, the display is a
sequence of frames drawn by the target device based on input data values, and
the impression of motion is created by the frames being shown at a great
enough rate of speed. Each frame in the display is composed of images, where
images are the static visual representations of objects or groups of objects.
The display design created by the designer is the abstract description of what
images are displayed on the screen and how they are modified by the input data
values from sensors and other computers. The abstract description is
expressed concretely by the formal display description and the executable
display description. This section contains the requirements for these three
descriptions of the display. It also contains the requirements for all
supporting data: the library, the test data, and the target-specific code.
The formats of these data items will be specified during system
implementation.

2.3.1 Display Design Requirements

The display design is an abstract, format-independent description of the
contents of the display and how changes in the input data affect the mapping
of visual information onto the screen. In order to facilitate the creation of
usable, unambiguous displays, we have defined a hierarchical structure to be
used by the designer in display designs. This section is divided into the
following parts, reflecting the display hierarchy:

o The Display Design Hierarchy,
o Entities,
o Segments, and
o Modules.

2.3.1.1 The Display Design Hierarchy

The display design is composed of a module which is a collection of one
or more segments. Each segment consists of entities, other segments, and
module invocations. An entit is in turn composed of a collection of pixels.
A Dixel is the smallest resolvable area of a graphical display device and as
such is the fundamental component of graphic images. This hierarchy is
illustrated in Figure 2-3.

Items affecting the final appearance of the display are associated with
different levels of the hierarchy. The association of items with particular
levels is shown in Figure 2-4. This illustration will be briefly explained in
the following paragraphs with more complete explanations given in the
following sections.

-* - 9 -

MOOULE

SEGMENT

ENTITYS INVOCATION

PIXEL

SFigure 2-3 The Display Design Hierarchy

ENTITY

Figure 2-4 Characteristics Associated with Hierarchy Levels

- 10-

.,. 1 .t,,v, ,.- h , ,w . Haim .

The realization of the display design is termed the 'display'. A
particular display is defined by a single module. This module has a name
associated with it, which is the name of the entire display. This module also
names the input parameters of the display design. New parameter values
transmitted from the sensor subsystems to the display subsystem will be
reflected when the module is redrawn. As mentioned above, a module is
composed of one or more segments.

These segments are in turn composed of zero or more entities, zero or
more subsegments, and zero or more module invocations. Subsegments are
segments which are nested in other segments. We will often refer to these as
'.h±liren' segments. A mokdule invocati means that the invoking segment
'requests' that the named module be drawn on the screen. Also associated with
each segment are a serial number, dynamic controls, and attributes. The
serial number provides a means of identifying each segment and which segments
are nested in others. DnaMIL nt specify at what position and how the
segment is to be drawn on the screen. Examples of such controls include
rotation and translation along an axis.

An attribute is an item of information which describes the appearance of
an object. When defining an object, the user defines both its shape and its
appearance. Attributes are distinct from the object's shape. Examples of
attributes include texture and color. Attributes may be defined at both the
segment and entity levels. Definitions of attributes at the segment level
will take precedence over those at the entity level when conflicts occur.

Entities are those objects which are seen as fundamental by the system.
Although the only truly fundamental object in graphics is the pixel, the
system needs to recognize more advanced entities such as lines, circles, and
three-dimensional shapes. Thus the definition of an entity as used within
this system is any graphical object which may not be subdivided to allow a
particular attribute to be specified for one part of the object but not for
another. Assuming a clock is not an entity, it may be divided into the hands
and the face, with the hands colored red and the face colored green. However,
a line cannot be partially yellow and partially white without actually being
two lines. Attributes are the only items of information associated with the
entity level.

When it is more convenient to the designer, a collection of entities may
be termed an ico. Icons will be further explained in Section 2.3.4. Icons
are not a part of the hierarchy and do not have any characteristics associated
specifically with them. They exist only for the convenience of the designer.

- 11-

The hierarchy and restrictions allow the designer to create displays
which are structured rather than being an arbitrary collection of images at
varying levels of complexity. Structure promotes ease of making changes in
the display design because it encourages the grouping of related items. It
allows the designer to postpone solving detailed problems. It facilitates the
reuse of portions of display designs. It also allows the designer to specify
and change which portions of the display are permitted to overwrite others on
the screen. It allows the designer to control the extent to which commands
affecting one portion of the display affect other portions.

To illustrate the use of the hierarchy to define a display, consider the
simple display shown in Figure 2-5. This display consists of two objects
which respond to the same input parameter. The first object is a linear scale
with a moving slide whose position on the scale is determined by the current
value of the input parameter, within maximum and minimum allowable values.
The slide also contains the actual numeric value of the input parameter. The
second object is a gauge which has been previously defined and stored as a
standard gauge. The gauge contains a needle which rotates based on the value
of the input parameter, to a position between the minimum and maximum
allowable values.

STANDARD GAUGE LINEAR SCALE

600

4D13-

200
S200 600

Figure 2-5 A Simple Display

Figure 2-6 shows how this display is constructed using the hierarchy.
The entire display is a module which is composed of two segments: one for the
linear scale and one for the gauge. The module specifies the input parameter
to be used and passes the input parameter to the segments it contains.

The segment for the gauge consists of two major subpieces: the text of
the gauge which is a collection of textual entities; and the invocation of the
standard gauge module. The textual entities are the letters that make up

- 12-

- I MODUL E

~['SIMPLE DISPLAY'

SE-GET-.OSEGMENT 2.0
//

NVC,.ATONO ET!S

'TANARD AEE ThUanue (LNER ALE)

parameter and maximum and minimum allowable values are passed to it during the
invocation. These are used by the module to oontrol the motion of the needle
and to display the numbers '200' and '600'. The gauge segment specifies where
the invoked module will be displayed on the screen using translations along
axes and the size of the invoked module using scaling factors.

The segment for the linear scale is composed of several major subpieces:
the text of the linear scale which is a collection of textual entities; the
vertical scale which is a collection of line entities; and the slide, which is
a segment. The segment also contains the dynamic controls to move the slide
segment up and down based on the velue of the input parameter with constraints
to prevent it from moving off the scale. The textual entities are the letters
and digits that make up 'LINEAR SCALE', '200' and '600'. The entities that
make up the vertical scale are a vertical line and several horizontal lines of
differing length.

The slide segment, whose position along the scale is related to the value
of the input parameter, is composed of several entities and a segment. The
slide box is composed of several entities including a triangle, a vertical
line, and several horizontal lines of different lengths. The numeric value is
in a segment whose content is a comnd to display the current value of the
input parameter. As the segment which contains the numeric value of the input
parameter is a part of the slide segment, the numeric value will appear to
move up and down with the slide box.

-13 -

This example shows the major aspects of the hierarchy and how they
interrelate to facilitate the construction of complex displays. For a more
thorough example showing the use of the hierarchy in constructing a display,
see Appendix B. The characteristics associated with each level of the
hierarchy will be discussed in greater detail in the following sections.

2.3.1.2 Entities

The following two-dimensional entity types need to be provided with the
system:

o points;
o lines in various line styles such as dotted, dashed, or solid;
o text, consisting of letters, numbers, and special characters;
o regular polygons such as triangles, squares, and hexagons;
o irregular polygons;
o conic sections such as arcs and ellipses; and
o irregular curves such as Bezier, cardinal, and cubic splines.

The designer needs to be able to fill any closed curve or polygon with any
pattern. This allows such images as checkered backgrounds and colored
schematics of vehicles. The above entities may be displayed in two
dimensions. Support must be provided for three dimensions to allow depth to
be incorporated for more realistic representations of objects and to transmit
more information to the viewer. All two-dimensional entities should be usable
in three dimensions. Also, regular three-dimensional entities such as
pyramids, cubes, cones, and spheres are needed. The designer needs to be able
to create irregular objects based on splines and other curves. Intersections
and unions of these objects are needed to create holes in blocks or to build
airplanes from rectangles and cylinders. Light sources in any color need to
be provided so that shadows and highlights may be seen in three-dimensional
scenes.

The designer needs to be able to depict three dimensional objects using
either wire frames, panels, or continuous shading. In panel shading, the
surface is approximated by a number of flat panel surfaces, and each surface
is given a uniform color. While in continuous shading, a surface's color
varies according to the angle at which light is reflected. It must be
possible to map a texture pattern to a solid, molding it around the apparent
body. All hidden surfaces need to be removed when displayed for clarity of
images. Wire frames may have depth cues attached to them by the designers.
Depth cues are scales which attach color or shade as a function of distance
from the viewer so that lines in the background appear to be far away while
lines up close are brighter. These scales need to be definable by the
designer.

The system needs to support the creation of luger-defined antitles in two
and three dimensions. This allows the designer to create images which are too
difficult to build using the above set of entities alone. An example is a
three-dimensional view of the terrain. Terrains could be drawn using large

- 14-

C1

*, numbers of general polygons positioned according to display parameters, but
attaching the polygons to the parameters would be very difficult since each
polygon must be placed precisely to simulate the actual world. Given that
terrains will probably be used in many different forms under many conditions,
highly flexible terrain entities must be supported. Since there is no well-
known standard parameterization of a terrain, a predefined terrain entity

* would be useless in many situations. It is better to allow the flexibility of
supporting user-defined entities than to attempt to foresee all entities which
might be needed.

User-defined entities share the characteristics of the pre-defined
entities, where pre-defined entities are those originally provided with the
system as specified above. No command will allow an attribute to apply to one
part of the user-defined entity without applying to the rest. It is possible
that a user-defined entity will have changing attributes such as in a
multi-colored terrain, but these colors will be treated as part of the entity
itself, not as an attribute assigned to the entity.

2.3.1.2.1 Attributes

This section lists the available attributes. Again, attributes desnribe
the appearance of an object. The following attributes will be supported by
the system:

o chromaticity,
o gray level,
o transparency, and
o diffuseness.

These will be described in the following paragraphs.

The designer will be able to define the chromaticity of both the
foreground and background. He will also be able to define the gray level of
the foreground and background. Chromaticit refers to the combination of the
hue and saturatin of the color of an object, while gr y level refers to the
lightness or darkness of an object. We use the term 'color' to refer to the
combination of these three aspects. Some target display devices specify color
in terms of red, green, and blue components. The two systems are related in
that changing a red, green, or blue component changes the chromaticity while
changing all three proportionally changes the gray level. The user may work
with whichever system is most convenient.

Many graphic display devices allow use of a certain number of colors at a
time out of a larger range. This larger range is called a 'palette'. The
range of possible colors in the palette should not be arbitrarily limited by
the system because it is not possible to predict all of the colors which may

need to be used in future displays.

It will be possible to specify the trans1arenay of an object, i.e., to
what extent an obscured item will be seen through a covering object. The
range will be from total transparency to total opaqueness. Transparency could
be used to show invisible objects such as the extent of a threat envelope or

- 15-

the walls of a building. It could also be used to show shadows for three-
dimensional objects by defining the shadow as a transparent gray shape. If
the transparency is below a given threshold, covered lines will be dashed
instead of solid (unless the object is totally opaque). Dashed lines are thus
used to distinguish between hidden objects even though the colors are no
longer distinct. This threshold will be specifiable by the designer.
Transparency needs to be cumulative in such a way as to give realism when
images are viewed through multiple semi-transparent objects. For instance, if
a mountain is behind overlapping, transparent threat envelopes, an aircraft
pilot would like to be able to see the mountain behind the envelopes.

The d of an object needs to be specifiable, where diffuseness
is how much of the light striking an object is scattered back to the viewer.
Diffuseness will range from being totally specular to totally diffuse. This
applies only to three dimensional objects in scenes with one or more light
sources. Diffuseness lends realism to a scene by showing the roughness or
smoothness of objects.

Like transparency, diffuseness needs to be cumulative for multiple
reflections. However, the extent to which multiple reflections are shown is
not as important as other aspects of the images on the screens since only
partial support of multiple reflections may not be noticeably different from
full support.

As mentioned above, attributes may be defined at both the segment and
entity levels. By allowing entity-level definitions of these attributes, the
designer can easily create complex, multi-colored objects without using large
numbers of segments, one for each color. By allowing segment-level
definitions, the color or transparency of the entire object may be changed
with only one command. However, if the designer wants some parts of an object
to change to blue on command and other parts to change to green, each part
will need to be defined in a separate segment.

2.3.1.3 Segments

Segments are collections of entities, icons, subsegments, module
invocations, dynamic controls, and attributes. Each segment needs to also
have a coordinate system and a clipping boundary specified by the designer.

All movements of the segment as specified by the dynamic controls will
use the specified coordinate system. In the context of this report,
coordinat ystem refers to the measurement units, the placement of the
origin, and the orientation of the x, y, and z axes. Each segment may have a
different coordinate system. The designer will specify how the coordinate
system of a subsegment relates to that of its PaR a. The segment may only
move as a whole; the parts of a segment are placed relative to each other in
the same way each time the segment is redrawn. The coordinate system allows
the designer to specify what point will be the origin in all transformations.
If a coordinate system were not present, the effect of transformations would
be ambiguous.

- 16-

The designer shall also be able to specify a gligg n bgnar which is
delimited by any closed two or three dimensional shape. The edges of the
clipping boundary define a border across which no portion of a segment may be
drawn. This boundary can be delimited by any shape so that the desigrer has
full flexibility. Clipping boundaries allow different segments to overlap
each other without losing clarity. Using clipping, an instrument panel made
of line drawings placed over a three-dimensional map of the terrain can be
clearly distinguished from the map by giving the instruments a black
background and a clipping boundary. The alternative would be to attempt to
use different colors for all of the lines so that each may be distinguished.
This may be impossible in certain situations, especially on monochrome target

display devices. Clipping is shown in Figure 2-7 in which boundaries are
shown with dashed lines. The actual clipping boundary for a nested segment
(e.g., Segment 3.1.2 in Figure 2-7) will be defined by the intersection of its
parent segment's (e.g., Segment 3.1 in Figure 2-7) active clipping boundary
with its own predefined clipping boundary. This new clipping boundary becomes
the active boundary for all children of the nested segment (e.g., Segment

3.1.2 in Figure 2-7). Clipping boundaries, like entities, will remain static

in size, shape, and position relative to the coordinate system of the segment.

* /

CLIPPING t -

BOUNDARY - - - -.

SEGMENT 3.1

REGION IN WHICH
I SEGMENT 3.1.2's

S OBJECTS WILL BE
DRAWN.

I"

CLIPPING
BOUNDARY , Y

FOR
SFGMFNT 3.1 2

Figure 2-7 The Intersection of Clipping Boundaries

As segments may be composed of other segments, it must be possible to

nest segments inside each other to practically any depth. To allow the
designer and the editor subsystem to keep track of which segments are nested
in others, each segment will have a unique vxeria number. The 'highest'
segments, those which are directly contained within a module, will have serial
numbers of 1.0, 2.0, 3.0, and so on in whatever order is appropriate for the
particular display. The children of a segment (those which are nested within
that segment), will be numbered using the parent's number as a prefix in the
same way sections are numbered in this report. As an example, the three
children of 8.4.5 would be 8.4.5.1, 8.4.5.2, and 8.4.5.3. In general, if S is

- 17-

the serial number of a segment with n children, they will be numbered 1..i,
., ... , S.n. This is illustrated in Figure 2-8.

"ABC"

SULN SEG...T ./- SE...NT

SEGMENT ., SEGMENT

1.0 2.M J.0.

SE"MEt.'NT SEGMENT SEGMENT E EN

SGETSG. SEGMENT SEGMENT SEGME NT

.. 2.2 1.2. J...K.1 J...K.2 J K.L

Figure 2-8 The Segment Numbering System

When a display is to be redrawn, the numbering system is used to
determine the priority of segments where prLoity expresses which segment is
to be showing when two overlap. Segments with higher priorities will appear
to be drawn on top of other segments. The serial numbering system expresses
which segments have the higher priorities where the ordering is such that all
.;erial numbers beginning with 1 are drawn before all those beginning with 2.
Likewise, all those beginning with 1 .1 are drawn before all those beginning
with 1.2, and so on. Also, each parent segment is drawn before its children.
Thus segment 2.0 and all of its children will have a lower priority than any
of the segments with serial numbers beginning with 3. This ordering is
illustrated in Figure 2-9 where letters are used to show the priority. The
segment indicated by the letter "a" has lower priority than the segment
indicated by the letter "b", and so on.

2.3.1.3.1 Dynamic Controls

Dynamic controls are used to specify where on the screen an object
defined as a segment is to be drawn. They are also used to control whether a
given segment is to be drawn or updated in a given frame. Finally, they are
used to specify how numeric or textual information defined as a segment or
subsegment is to be presented to the viewer. Dynamic controls will be
provided for the following items associated with graphics:

- 18-

o the scale0along any axis,

L. 5~ 'E " SEGMENT
S GMENT

SEGMENTSEMN

i o mirroring about any axis,

o rotation
about any axis,

o translation along any axis,

o direction of view,

o twist along the
direction of view,

o distortion of perspective,
o field of

view,

o blinking rate,
~o

priority, and

o clipping method, and

o update rate.

Dynamic controls will be provided for the following items associated with bothtextual
and numeric

data:

o heght,
o width,
o font style,

o relative angle,

o field width,
o justification

within a field, and

o character
used to pad a field.

Dynamic controls
will be provided

for the following
items associated

with

numeric data only:

- 19 -

o lnin ae

o use of signs,
o use of corns,
o use of decimal points,
o number of decimal digits displayed, and
o type of exponential notation.

Scaling, mirroring, rotating, and translating a segment in response to
input parameters allow the designer to make an object appear to move on the
screen. Each time a segment is drawn, the system will recalculate its
position given the equations specified by the designer. For instance, a clock
hand might be made to rotate according to the equation [90 - (30 s HOURS)
degrees] so that when the value of HOURS was 12 the clock hand would be
vertical and pointing upward, and when the value was 9 it would be horizontal
and pointing to the left.

All positional changes are relative to the segment's coordinate system.
This coordinate system's orientation relative to its parent is specified by
the designer. All transformations are to take place in the order in which
they are specified and are to be cumulative: rotating and then translating a
segment may be different from translating before rotating as shown in Figure
2-10. This allows the designer to specify segment movements in whatever way
is easiest for the particular situation.

The transformations listed above refer to moving the segment on the
screen. It will also be possible to specify the direction from which a
three-dimensional segment appears to be viewed by specifying the location of
the viewpoint, direction of view, twist, distortion, and field of view. The
first defines the viewer's apparent location relative to the segment. The
next specifies what the viewer is looking at. Twist allows the segment to
appear to be at an angle or upside-down by twisting the viewer's horizon.
Field of view defines a cone along the direction of view so that all objects
falling within the cone will be displayed. Perspective distortion allows
exaggeration or suppression of apparent distances between parts of objects.

The designer needs to be able to control whether or not a segment is
drawn. If a segment is not drawn, all subsegments of that segment will -ot be
drawn. This allows portions of the picture to be conditionally displayed.

The rate of blinking of a segment will be specifiable. This will range
from as fast as possible to no blinking. Blinking can be helpful for drawing
attention to important images in the display.

The designer will be able to make use of user-specified priorities to
override the default priority system based on segment numbers. Use of these
priorities is demonstrated in Figure 2-11. This figure is based on Figure 2-9
with the letters indicating priorities as before, except that the
user-specified priorities are taken into consideration. User-specified
priorities may be used to re-order the priorities of sibling segments and

their subsegments. They may not be used to re-order the priorities between
the children of one segment and the children of another. For example, in
Figure 2-11, Segment 3.1.2 could never have a priority between the priorities
of Segment 1.2 and Segment 1.1. User-specified priorities allow different
parts of the display to be interwoven, providing greater flexibility to the

- 20 -

I~~M I I tr Ili

J -.

Fl L , -1 T.-.

44f1gA4--- i rL-t'4_
tsate by Trotsate by Translate by

900n about Zn +3 n9X. -4 in +2 in X,+1in Y

(a) Rtt Transl-Roation 4 Translation

Figure ~ ~ ~ 1, 2I0TeCmltv n ocmutt aueo rnfrain

des~ ier.i Futeroe th destigner ma hnetep iortissotatojet
on14-41 the414 4--nmyatrntl ehdeno eeld

. 0 nFgue211 l segments..4 witou ue-spcfe prioitiest ar

assuedRothate by Toe ranriylate bny Tralngslamete byc hvbe

assTese user-specified priorities wil be secifiyedmeicll with1 higher

4n .0 in Figure 2-11. Alsget ihu srseiidpirte r

-21-

_ __ ,.'.__ __2w~. ,.rr wxW

MODULE

Prioritf sPriori ty d P'riori ty ol r Iort'

SEGMENT SEGMENT 2 SEGMENT 5EGMENT
1.0 I 2.0 3.0 4 0

SEGrIENI II SEGMENT S EGMENT SEGMENT
1.1 1.2 2.1 3.1

Priority

k f h II g

SEGMENT SEGMENT SEGMENT r SEGMENT
1.2.1 3.1.1 3.1.2 3.1.3

Figure 2-11 The Use of User-Specified Priorities

The method of clipping a segment will be specifiable as none, partial, or
whole. No clipping means that the clipping boundary will be ignored and the
system will assume all lines will never be drawn outside of the specified
limits. This especially applies to segments which do not move at all.
Specifying no clipping could increase the update rate for the display by
allowing the computer to ignore the possibility of the segment stepping beyond
its bounds. Partial clipping means that whenever part of a segment strays
beyond its bounds, only that part will not be displayed--the rest of the
segment will be displayed. This is the most common clipping technique. Whole
clipping means that whenever any part of a segment would be clipped, the
entire segment (and all subsegments) will be suppressed. This is often used
to suppress messages which will not fit on the screen. It may also be used to
speed the update rate by simplifying the processing which must take place for
each frame.

The designer will be able to specify the update rate of a segment from a
given range of values, where update rate is the rate at which a portion of the
screen is redrawn with a new frame. This is not to be confused with the rate
at which the hardware refreshes the images on the display device. This can be
used to increase the update rate of the rest of the display by allowing the
computer to ignore updating a particular portion of the screen. It may also
be used to slow down how often a particular portion is updated so that it does
not move too quickly for the person viewing the display. For instance, the
viewer may be distracted by the rapidly changing digits of a digital altimeter
which is updated 40 times a second, and would prefer to see it change only
twice a second.

-22 -

For all textual and numeric data, the designer will be able to specify
the relative angle, height, width, and font style of the characters used to
display the data. Relative angle here refers to the angle at which each
character is drawn with respect to the base angle of the entire text. For
example, italicized text may be created by slanting each character a few
degrees from the perpendicular. Height controls how tall each character is
displayed, while width controls the thickness and relative spacing.
Specification of the above controls allows emphasis to be placed on important
messages or to improve the readability of text.

Again for all textual and numeric data, the designer will be able to
specify the minimum width of the field which the data will occupy on the
screen. The field will be oriented in such a way that the lower left corner
is positioned at the origin of the segment, and in such a way that it is
parallel with the surface of the screen so it is readable. A specifiable
character will pad the field so that the data is either left justified, right
justified, or centered by the designer. These controls allow clear
presentation of textual information which is easy to read.

In addition, for numeric data, the designer needs to be able to specify
the format of the data: whether and where signs will be displayed to denote
positive or negative values, whether commas are to be used, how many decimal
digits are to be displayed after the decimal point, and whether exponential
notation is to be used. These controls allow clear presentation of numeric
information so that it is as readable as possible.

As an example of the differences between shapes, attributes, and

controls, consider a display which depicts an enemy aircraft in three

dimensions. The body, wings, and fins of the plane would be formed from
various entities such as cylinders and triangles. Attributes would be used to
make it smooth, highly reflective, and silver in color with the appropriate
markings. The transparency attribute would be used so that one could see the
pilot in the cockpit for added realism. All of these define the airplane
object.

Given the object, the dynamic controls are used to position it on the
screen so that it appears to be in the correct position in the sky relative to
the viewer's plane. There are two ways this could be done. One would be to
offset the enemy aircraft from the viewer's position through a sequence of
rotations and translations. Another technique would be to specify viewpoint
coordinates relative to the enemy aircraft's coordinate system. Which way
would be preferable for a particular application depends on the type of
parameters received. Whichever technique is used, as the parameters are
updated the enemy aircraft will appear to move against the background sky or
ground.

There will be a separate list of graphic controls for each segment to
specify the above transformations. If two segments are to be moved together,
they should be combined into one or both be made children of a parent segment
in which the controls are placed. Regardless of the form in which they are
specified, graphic controls need to also allow the designer to designate
whether a particular segment is viewable or not. They must allow
specification of the invocation, or drawing, of submodules--modules which are
used as part of a segment. It must be possible to pass data to these modules

-23 -

from the segment. Dynamics must provide conditional control of a segment so

that lists of actions take place only under certain situations. They must
allow conditional looping so that lists of controls are acted upon repeatedly.
Dynamic controls will be used by the designer to display messages and data on
the screen, such as a warning message or the numeric value of a temperature
gauge.

The final note concerning dynamic controls is that they will not
accumulate between frames. If in one frame an object is moved to the right 2
inches and in the next 3 inches, the total movement in the second frame will
be 3 inches, not 5. This allows the designer to ignore previous positions

9 when specifying the dynamic controls for a segment. Since it would be useful
to be able to base positions on previous segment positions, access to these
values must be provided. One possible mechanism for this would be to provide

such values as PREVIOUS X LOCATION and PREVIOUSXROTATION. This allows the
designer to move an object across the screen without needing an input
specifying elapsed time.

2.3.1.4 Modules

Each module will have an alphanumeric name by which it may be referenced.

Each module will have a set of specified input parameters. Each input

parameter will be given a name by which it may be used. For example, a module
used to show direction might have the input parameter names will be used by
the segments within the module in expressing dynamic changes.

Within a segment of a module, it will be possible to evaluate expressions
formed from the named inputs and from function calls with the inputs as

parameters. For instance, LOGARIT4 (TEMP * 2 - 10) would be a legal
expression, assuming that TEMP is greater than 5. The functions which can be
called will include the following:

o trigonometric functions (such as sine, cosine, tangent, acrsine, arc-
cosine, and arctangent),

o other transcendental functions (such as exponential, logarithmic
o conversion functions (such as rounding, truncating), and
o designer-defined functions.

If an expression within a segment is illegal, such as when dividing by
zero, the system must handle it gracefully. One possible technique would be
to display a message on the screen informing the viewer of the error and the
possible corruption of the data in that frame.

Input data will come from the environment outside the display subsystem.
These data may also be received as specified below from other modules. Input
data may be either single items or lists of items. For example,

"CURRENT HEADING" would be a single input while "ENEMY-POSITIONS" would be a

list of inputs.

-24-

4One module will be able to invoke another by name from a segment within
the invoking module. This will cause the invoked module to draw itself on the
screen. Hence, an instrument panel may be composed of several modules invoked
from, for example, Segment 5.3.8. Only modules, not segments, may be invoked
in this manner; the segmentation of a module is hidden outside of that module.
An invocation results in the contents of the invoked module being displayed as
if it were a subsegment to the segment from which it was invoked. An invoked
module will be able to receive data from the segment. The system will support
the passing of the data by allowing the designer to state which parameters in
the invoked module are given which new values. This invocation allows: the
drawing of a module in a frame more than once, such as for a fleet of ships;
the structuring of displays into well-defined components; and the one-time
definition of a component which may be used in many display designs.

2.3.2 Formal Display Description Requirements

As mentioned in the discussion of the need, a primary problem in the
current method of creating displays is the lack of communication of display
designs. An unambiguous description is needed to solve this problem. The
formal display description fills this need. It is formal in the sense that it
does not use a natural language for the description. While English can be
unambiguous, being so is not a necessary part of a statement in the language.
If it were a necessary part of the language, no sentence would be
misunderstood by any knowledgeable person. The formal description will be
defined in such a way that it cannot be misinterpreted by any part of the
system, including the designers. Thus the formal description will be an
absolutely unambiguous description of the content of the display and its
response to test data.

The formal description will be readable by a programmer so that he may
.$,use it to program the target hardware manually when it is impossible or

undesirable to do so automatically. All displayed images will be specified
from the symbolic description level down to the level of pixels drawn on the
screen so that the programmer does not need any knowledge about graphic
algorithms.

One possible way to formally describe the display would be to provide a
bit map definition of the display. A bt MaU is a matrix in which every pixel
on the screen is given a corresponding color. Thus a line would be stored as
a bit map with the values in most of the bits representing the background
color and a small number representing the color of the line. This is
unambiguous because one knows precisely which pixels will have what values.

Bit maps, however, provide very little abstract information to the
programmer. He must have a symbolic description of the display to be able to
program the target display device. The format of computer code is very
different from a bit map, and using bit map definitions would add an extra
step in the process by making the programmer determine the types and locations
of shapes from the bit maps. If the information can be transmitted in a more
readable form such as in the statement "draw a line from (20,3) to (80,80),"
determining the types and locations of objects in the display is simple.
Thus, if a line is to be drawn on the screen, it will be specified as a line

- 25 -

so that the programmer's job is simplified. This level of detail allows a
programmer to manually write the code to run the target device. He should
need to do as little interpretation of the formal description as possible
while creating optimal code.

As mentioned above, it is assumed that the programmer has a very limited
background in computer graphics. Thus all algorithms which are referenced
within the formal description should be given to him along with references to
alternative algorithms. This includes algorithms for both graphics (such as
those for continuous shading) and mathematics (such as those for tangents and
logarithms).

2.3.3 Executable Display Description Requirements

The purpose of this system is to place displays in the target display
device. It would defeat the purpose of the system to a certain extent if the
only output was a formal description of the display because further
transformation is needed before the target device may execute the display.
Hence the system will create the executable display description. This will be
the code which may be transferred to the target hardware. It will instruct
the target hardware on how to draw the display design in real time, in excess
of 50 frames per second. The difference between the executable and formal
descriptions is that the latter is in a general form while the former is for
specific hardware. The data will also be in whatever format is necessary for
system implementation. It can be created either automatically by the code
generator subsystem or manually by a programmer.

2.3.4 Library Requirements

To solve the need for reuse of display components, the system will
maintain a 21brr of these components. The stored components will be of
several types: user-defined entities, icons, segments, and modules. Each
stored component will be given a name by the designer so that it may be
retrieved using that name at a later time.

Modules are stored in their entirety, complete with the defined inputs
and segments. Example modules would be a compass or a truck. When the
designer specifies that a module will be incorporated into the display at a
certain place, the editor will show a static image of the module in the
display upon command so that the designer can determine if its use is correct.
However, only the name of the module will be placed in the formal display
description, not the module's full description. The module will be referenced
only by name until the last possible moment, at which time its description
will be inserted in the display design. Thus if a display makes use of a
module, any changes in the module will be reflected in the display whenever
that display is regenerated. This allows several designers to maintain
consistency of images used in displays.

- 26 -

Segments are stored in libraries with their associated attributes and
dynamic controls as well as the entities, icons, subsegments, and module
invocations which form the segment. Examples of stored segments might include
a row of dials from an instrument panel or a generic wing of an airplane with
movable flaps. Changes to library segments do not change the displays in
which those segments have been previously used. When a display is built and
the designer incorporates a library segment, the description of that segment
is immediately inserted into the display design.

Icons are groups of entities with their attributes which are often used

in displays. The needle of a compass or a symbol representing a hospital are

typical icons. Icons, like segments, are incorporated during the building of
the display. If a library icon is changed at some later time, any displays
into which the icon had been previously placed will not change. However, any
display designs built after changing a library icon will reflect the changed
version of the icon.

2.3.5 Test Data Requirements

To allow the designer to evaluate the display design, test data are
needed so that the animator may simuate how the display will appear in the
final environment. The test data will simulate inputs which are to be given
to the target hardware by the data-acquisition computer shown in Figure 1-1.
The designer will be able to generate the test data from a variety of sources.
To test 'normal' conditions, data could be generated from taped recordings of
the actual environment or by test data generator programs which simulate the
sensors and other computers. To test 'impossible' conditions, test data could
be generated manually by the designer.

2.3.6 Target Specific Code Requirements

The target specific code is data generated by the programmer to support

the automatic code generation process. The programmer uses the target
device's instruction set in creating the necessary target specific code for a
given application. Where the formal display design defines the display down
to the level of pixel actions, the target specific oode states how

instructions are used to manipulate the pixels in a particular target. This
target specific code also states how data will be received by the target
display device from the data-acquisition computer.

Since the target devices are constantly being upgraded to include new

technology, the instructions used to generate an image will differ from target
to target. Also, the order and format of the data values sent from the data-
acquisition computer will depend not only upon the computer but also upon the
application. Hence, this information must be provided by someone familiar

with the instruction set and characteristics of the hardware in use at a

particular facility. This person should be a programmer because the
documentation which describes the computer hardware is meant for use by those
with a programming background.

27

~mkb~PXz

2.4 Process Requirements

These are the requirements for the processes shown in Figure 2-2. These
processes are the programs which transform the various pieces of data. The
editor transforms the designer's commands into a formal description of the
display. The animator draws the display design on a graphics terminal,
updating the display in response to test data. The code generator transforms
the display into the executable display description for use in the target
hardware.

We list below those capabilities needed for the creation of optimal
display designs. We will also specify in a general way how those capabilities
are presented to the designer. It must be very simple to use the system.
Furthermore, potential designers are often intermittent users, and ease of use
is needed so they do not need to relearn the system every time a new display
is to be designed. To support these needs, the system must make extensive use
of menus and provide on-line help.

2.4.1 Editor Requirements

'11jijng' is the process of creating and modifying a document or data
file, in this case the formal display description. In this system, the editor
will automate the process of interactively creating formal display
descriptions. The editor requirements must facilitate the creation of any
display which the designer would need to design. This section is divided into
the following parts:

o General Editing Capabilities, and
o Default Attribute Values.

The first section lists the general needs associated with editing displays.

The second section defines default values for the attributes of images in
display designs.

2.4.1.1 General Editing Capabilities

These requirements allow the designer to create useful display designs
with a minimum amount of effort.

The designer will be able to save, retrieve, and modify the above display
designs including both the graphical images and the dynamic specifications.
This is similar to the capabilities of document creation systems as. mentioned
above.

To allow the designer to modify the images as easily as possible, the
editor must be capable of moving the images on the screen. This movement is
not to be confused with the movement observed during the animation phase of
the design process; it refers only to the temporary repositioning of objects
during the edit phase. Thus the designer may draw a picture on one face of a
cube and then turn the cube to draw a picture on the opposite face. Whereas

- 28 -

%

textual editors only need to provide the ability to move a window forward and
backward through a file, the graphics editor must support movement in all
directions. The editor must also provide the ability to view multiple windows
simultaneously and to move between windows easily. This is necessary to allow
the designer to view various portions of a display at the same time or to
preview a library component for possible inclusion in a display.

The editor must support the hierarchy of displays as defined above. The
designer needs to be able to define modules and segments within those modules
with all of the necessary associated information about parameters and dynamic
controls. This does not mean that the editor will allow the designer to see
the dynamics while in the editor; he must use the animator subsystem to see
the display actually change in time.

The editor will allow the designer to assign names to segments in a
display during the editing process. These names exist only for the
convenience of the designer. They will allow the designer to refer to a
segment using a more mnemonic technique than the numbering system provides.
Unlike the segment numbering system, names are not part of the design
hierarchy. Both segment names and numbers are not accessible outside of the
module in which the segments are defined.

Furthermore, the editor must allow the design of icons and other display
components for placement in the library. The editor must allow the designer
to maintain libraries, adding, deleting, and modifying items at will. Any
library icon may be incorporated into the design with any scale, orientation,
or segment membership. Segments may be incorporated as children of any other
segment. Where the parameters of an incorporated segment are undefined in the
current module, the editor should enforce their definitions.

To further support the library of components, the editor must allow the
library to be organized using the concept of nested libraries, or
sublibraries. Using sublibraries, the designer could, for example, have a
library of all gauges with sublibraries for altimeter, temperature, and fuel
level gauges. The editor must allow the designer to view both the names of
the components in a library and the components themselves.

The editor will also assist the designer in designing a display according
to the capabilities of a particular target display device. By entering the
name of the target, the editor shall set up the screen so that there is a one-
to-one mapping between the apparent size of the target on the graphics
terminal and the target screen's actual size. Also, the palette of colors
will be limited so that they correspond to the target display's palette when
that palette is smaller.

If the screen is to be 4 inches by 8 inches the editor viii block out
all but a four by eight portion of its screen. This allows the system to
transfer the display design to the size and shape of the target device. The
designer shall then be able to expand or contract the display design so that
he can examine in detail a particular area of the display. Such an expansion
might mean that a portion of the display is beyond the borders of the screen.
Thus the designer might be able to reposition the display on the graphics
terminal to examine different portions of the image. While the display is so
expanded, the effect of all commands expressing the sizes of icons and other

- 29 -

parts of images will be scaled appropriately. If the display is two times
larger than normal, a line 2 inches long will appear to be 4 inches long.
These capabilities allow the designer to position images precisely.

Constraining the colors used in the display allows the designer to be
certain that the display design will appear on the target display as desired.
Also, since many graphic hardware devices support a large palette of colors of
which only a few may actually be on the screen at any one instant, the color
constraint would limit the number of different colors in the display
simultaneously. Whenever too many colors are used, a message will warn the
designer of the problem.

The above constraints must be removable. Often the designer wishes to
create a hypothetical display which is not limited by the capabilities of any
particular target device. Then he must have access to the entire screen and
palette of the graphics terminal. Furthermore, it must be possible to allow
the designer to define constraints for any new target devices which might
become available without necessitating a rewrite of the editor code.

2.4.1.2 Default Values

It is desirable to allow the designer to not need to specify every detail
of a display when many of the details remain the same in the majority of
cases. Defaults are values which are automatically given by the system in
lieu of specification by the designer. Also, defaults are provided so that
the display acts reasonably when information is not supplied. These defaults
are specified by the editor when the displays are originally created as
opposed to being added later by some other part of the system.

Below are suggestions for the default values. The implemented system

should allow the designer to respecify the defaults at will. Thus where we
specify that the default for a monochrome display is light on dark, he may
change this default to dark on light.

2.4.1.2.1 Default Attribute Values

The default color for monochrome displays will be light on dark, while
the default chromaticity for multi-colored displays will be white on black.
The default gray level will be the median gray level of the gray scale being
used. These decisions are arbitrary, and hence they underscore the need for
respecification of defaults by the designer.

The default transparency will be opaque. This reflects the normal
characteristics of objects in the world.

The default diffuseness will be halfway between totally diffuse and
totally specular. Again, this reflects the normal characteristics of objects
in the world.

- 30 -

2.4.1.2.2 Default Dynamic Control Values

The default clipping boundary will be the border of the screen. This
allows maximal use of the screen space.

The default blinking will be no blinking. In most cases, the designer
will not need to have objects blinking on and off.

The default priority will be that the segment with the higher serial
number will have the higher priority as specified in Section 2.3.1.3.

This is provided for the purposes of reasonable behavior when the
priority of a segment is undefined.

The default clipping will be partial clipping. This is the most widely
used clipping technique.

The default update rate will be as many updates per second as supported
by the hardware. Normally, the designer will want to have the display respond
as quickly as possible to environmental conditions.

For text and numeric data, the default will be displaying all letters and
digits horizontally using the display device's standard fnt styli, height,
and width. This font style is usually the one which is displayed on the
screen the fastest.

For textual and numeric data, the default will be displaying the data in
a field which is as small as possible. The field width should normally be
defined by the designer, but a default needs to be provided so that the
display behaves reasonably when the width is undefined.

For numeric data, the default will be that if the number is negative, it
will have a leading minus sign; otherwise, no sign will be displayed. If the
data are greater than the precision of the display device's integer
arithmetic, it will be displayed using the exponential notation. Commas will
not be supplied by default, and as many decimal digits as are within the
precision of the machine will be displayed. Again, these defaults are
provided for the purposes of reasonable behavior by display designs.

2.4.2 Animator Requirements

The animator uses both the formal display description and the test data
to allow the designer to test his display design by moving and changing the
images on the screen in real time. This is like a simulator in that it
'simulates' how the display will appear dynamically on the target device.
Essentially, the animator repeatedly displays static frames of images at such
a speed that the human eye perceives continuous motion.

The designer needs to be able to control the rate at which frames are
drawn on the screen of the graphics terminal. He needs to be able to see the
animation process happen at full speed-the same speed as the display would
appear on the target device, at any reduced speed, or on a frae-by-frme

- 31 -

basis. These different rates allow the designer to carefully evaluate his
display, perhaps identifying problems only partially noticed at full speed.
At any time he will be able to pause, restart, skip forward, skip backward,
change the speed, or abort the animation process. He will also be able to
request that the data be read in reverse instead of forward. These different
rates and techniques give the designer full control of the animation process.

While the animator is in the pause state, it will freeze the gathering of
test data so that no test data are lost. While the animator is r" fning at
full speed, intermediate values of parameters which are generated faster than
the frame update rate are ignored. However, when the animator is running at a
reduced speed the intermediate values will not be ignored; a frame will be
generated for each set of data values.

While the animator is in the pause state, the designer will be able to
manually enter the values of parameters so that he may test 'impossible'
conditions. He will be able to assign one or more parameters to a variable
inJut device, such as a rotary or slide potentiometer, so that he may
incrementally change their values and see these changes reflected on the
display. The designer will be able to increase or decrease a scaling factor
which controls how much change in the input device is needed to produce a
proportionate change in the parameter. If desired, the designer will be able
to continue to use the variable input device to control the parameter while
the animator is running. This variable input device frees the designer from
the need for keying in individual data points, allowing him to concentrate on
the actual evaluation of the display.

The animator will verify that at all times the display design conforms to
the restrictions on size, shape, and color specified by the designer. Again,
the display shape and size will be mapped to screen characteristics of the
graphics terminal. The designer shall be able to magnify and demagnify the
display design during the animation process so that he can more closely
inspect particular aspects of his design.

2.4.3 Code Generator Requirements

The system will provide for the automatic programming of the target
device. The code generator will combine the formal display description with
the target specific code and translate them into the target device's
instruction set. This program is the executable display description. When

more than one device is available as a target, the code generator will allow
the designer to specify the target by name so that the correct instruction set
is used.

The code generator will also map the display design to the specific
capabilities of a given target device. This process will include mapping the
palette used in the display design into the palette of the target. Warning
messages should be given to the designer if the number of colors used in the
display design may not be shown on the particular target device. This mapping
of colors needs to be defined so that the relationships between colors are
preserved as well as possible.

-32-

4V

Another mapping will be to match the size and shape of the display design
to the size and shape of the target device's display viewing area. This

mapping should be as close to one-to-one as possible so that a line 2 inches

long on the graphics terminal will map to a line 2 inches long on the target
device. If the display will not fit perfectly, the display design will be

rescaled to fill the target's screen as closely as possible. This scaling
will affect the sizes of all objects in the display equally. Warning messages
should be provided in such situations.

Another requirement for the code generator subsystem is that it allow the
programmer to specify which parameters named in the formal design description

are to be matched to which external values gathered from sensors or other

equipment. These external data values such as sensor data and other inputs

will be gathered using a subroutine written by the maintenance programmer.

The data gathering will happen in real time, with the target device's screen
being updated at rates in the realm of 50 Hertz--or greater--in response.

The code generator will be able to produce executable code for a variety

of specified target devices. The programmer will be able to add a new device

at will. Code will be generated from the knowledge of two items: the

instruction set of the given device and the name of a routine which sets the

chromaticity and value of individual pixels. Such a routine would be written

by a maintenance programmer for each different target device. If the target

device provides powerful graphics functions, the compiler will be able to take
advantage of these functions through more routines written by the programmer.

Such advanced routines are not mandatory to automatically program the target,

but they may allow more complicated display designs to be updated at high
speeds.

Under certain situations a target device may not be supported by the code

generator. This may occur when the target is new to the facility and the code
generator support software does not yet know the instruction set of the new

target. Another situation may occur when a display design is very complex and
so the executable description must be highly optimal to achieve the desired

update rates. In these cases, a programmer may perform the operation of the
code generator by manually combining the formal design description with the
target specific information.

2.5 Hardware Requirements

These are the requirements for the system hardware, including input

devices, output devices, and the host computer hardware. These requirements

*! are not detailed because many choices are implementation specific. In Section
3, we present further specifications for the hardware after examining the more
important implementation issues. This reflects the decision to choose
hardware only after the system is well defined. The capabilities of computer

hardware must be considered when making implementation-specific decisions.

These considerations must be postponed as long as possible so that they do not

overly influence the usefulness of the entire system.

- 33 -

i -.. .. h i .-

2.5.1 Input Device Requirements

An input device is any piece of hardware which allows the designer to
express commands to the system. Example input devices include keyboards and
graphics tablets. These input devices must be easy and natural to use. Also,
a minimum number of input devices must be used; more than two or three invites
confusion and fatigue by forcing the designer to switch often from one to
another.

Three different types of input are needed for this system. The majority
of the time spent with the system will be during the design phase, and during
this phase much of the time will be spent placing such items as the ends of
lines or centers of spheres. A device which moves a cursor on the screen of
the graphics terminal is needed. The cursor may then be used to place
endpoints and other positional information. Example input devices include the
mouse, graphics tablet with pen or puck, joystick, thumb wheels, and light
pen.

Another type of input will be for entering textual information. Such a
device would allow the designer to enter names of display designs or numeric
data. Examples of such a device include the keyboard and speech recognition
systems.

The third type of input is the variable input device mentioned in the
section on animator requirements. This device will be attached to a display
input value so that as it moves, the value of the display input changes.
Examples of such a device include a rotating or sliding potentiometer.

The above types of inputs overlap. The keyboard could be used to move
the cursor on the screen. A mouse, joystick or light pen could be used to
select a character from a list or to recognize characters handwritten by the
designer. However, combining both inputs into one can lead to an awkward
operator interface. To move the cursor from the lower left corner to the
upper right using the keyboard may require many keystrokes and is not nearly
as direct as repositioning a pen. Also, pointing to one character from a list
of over one hundred means time-consuming scans of lists. As an alternative,
the system could recognize characters hand-drawn using a mouse or light pen.

However, this would require an often lengthy training session before a new
user could begin to design. Hence, it would be preferable to provide both
types of input separately, perhaps allowing each to overlap to a limited
extent.

Positional information, su h as that provided by a light pen, may be used

to control the variable input, where moving the cursor on the screen is
equivalent to twisting a dial. The difficulty with using the positional

information in place of a separate device is that often the designer will need

to control several display input values simultaneously. This could be
difficult if only one controller were available. It would be better to have a
separate device with several potentiometers all in the same package which is
used only by the animator. Too many potentiometers will result in confusion
as to which corresponds to which input value, so no more than six to eight

need be provided.

- 34 -

2.5.2 Graphics Terminal Requirements

The graphics terminal will allow the designer to monitor the process of
creating the display design and to observe the display as it will appear on
the target display device. It must be able to match, if not exceed, the
target device in all aspects of graphical image generation.

2.5.3 Hard-copy Printer Requirements

The designer needs to be able to make hard-copy printouts of the static
images and the formal display description for evaluation by others and for
archival storage.

2.5.4 Host Computer Requirements

As in any system, the host computer must provide adequate resources to
support the application. More detailed requirements will be specified in
Section 3.

2.5.5 Target Display Device Requirements

Very few requirements exist for the target display device since the
purpose of the system is to supply whatever information the target device
needs to draw the display design. The most important requirement is that the
instruction set of the device be available to those who write the support
software for the code generator ae mentioned in Section 3. H:wever, the
general characteristics are herein described so that the reader will know for
which target devices the system will produce output. The following paragraphs
specify important aspects of the target display devices. They describe how
images are made to appear on the screen and how the images are passed to the
electronic hardware which transfers the image to the screen.

In most cases the target will be either flat panel (dot-matrix) or raster
(cathode ray tube) devices. This means that images are shown on the screen as
a large number of closely-spaced, colored pixels. This is opposed to vector
devices which draw lines only. Vector devices are not normally used in
applications which require images to change rapidly because they are designed
for very high quality images, not for very high speed. However, the
technology is changing and the system may one day need to produce output for
such devices. No major changes will be needed in the system to support vector
devices because all that would be necessary is vector instead of pixel
definitions of how entities are to be drawn in the target specific code.
Where a circle was before drawn using a large number of pixels, it would now
become a large number of short, straight lines.

The other characteristic is that most target devices are "double-
buffered." In this context, a buffer is a place in which an image may be
stored while it is displayed on the screen. Double-buffering means that while

- 35 -

one frame is displayed on the screen from one buffer, the next frame is being
drawn internally into a second buffer instead of directly on the screen. When
the new frame is complete, the two buffers will be switched so that the second
buffer is now displayed and the first buffer is redrawn with another frame.
Thus the viewer does not see the images being drawn on the screen piece by
piece, but is presented with the entire frame at once. If he were to see the
screen blank out and then be redrawn, the images would appear to flicker on
and off. This technique is not necessary if graphics may be generated at
extremely high speeds or if the displays are extremely simple, but it is
generally needed in the majority of situations.

2.6 System Usage Requirements

In this section we will show, in general terms, how the designer is to
use the system. See Appendix B for an example session which shows in detail
how a simple display would be created.

2.6.1 Overview

A display is usually designed according to the following steps. The
designer first roughs out a sketch of the display design on paper. He then
uses his sketch to draw the graphic images, adding the appropriate dynamic
controls, into the system using the editor. He next invokes the animator to
evaluate his design using the supplied test data. The preceding two steps are
repeated until the design is satisfactory. Finally, the designer invokes the
code generator subsystem to generate the executable display description for a
specific target device. If the system does not contain the necessary data for
the target device, a programmer may take the formal display description and
perform this process manually.

The following is a general description of how the editor, animator, and
compiler would be used. This section merely specifies the general actions of
the designer; the actual details are very implementation dependent.

2.6.2 General Usage Requirements

The system will use menus, prompts, and on-line help to make it easy for
the novice to learn. It may be assumed that the average novice has previous
experience with computers (use of word processors and other similar tools) and
a technical background. He should be able to learn enough commands in half an
hour that he will be able to create and animate a simple display such as that
shown in Appendix B. As mentioned above, ease of use is also mandatory so
that the intermittent designer does not need to relearn the system every time
a new display is designed.

- 36 -

.

2.6.3 Using the Editor

As in all other parts of the system, the editor will be menu driven. The
designer will not need to remember commands, and on-line help will always be
available. It must always be possible to abort a command in such a way that
the designer does not lose any work except that directly associated with the
command. The designer will work on only one segment (both its static graphics
and its dynamic controls) at a time.

The designer will be able to use items from the library of modules,
segments, icons, and user-defined entities in a display. A previously stored
item will be retrieved by either its identifying name or by selecting a
picture of the item from a menu. Since the library of items at a given site
will usually become quite extensive, the editor must support the nesting of
libraries within libraries so that, for example, all compass needle icons
could be in one library with those used in airplanes in one sublibrary and
those used in ships in another. This is similar to the nesting of directories
within other directories as is available in most modern computers' operating
environments.

It will be possible to display or hide the various other segments of a
module while working on a given segment; displaying another segment can help
in aligning centers of reference or entities, and hiding other segments can
reduce the clutter on the screen. To further facilitate the careful
positioning of objects, the editor will provide temporary grids and other
positional cues. The animator will also provide this capability.

2.6.4 Using the Animator

After invoking the animator, the designer will specify the source of test
data. He will also give the initial update rate for the entire screen as full
speed, as a fixed number of updates each time a key is pressed (so that the
designer may step through frame by frame), or as x updates every y seconds.
He will also be able to specify the use of variable input devices to control
specific parameters as defined above.

Whenever a special key is pressed, a menu will be displayed to allow the
designer to continue, stop, start over, skip ahead, move back to repeat part
of the display, change the update rate, run the display in reverse, or to
respecify which parameters are controlled by variable input devices.

2.6.5 Using the Code Generator

The designer will enter the name of the target machine on which the
display design will run. A programmer will need to create subprograms which
define how the target devices will draw the display design, and a subprogram
which gathers the data from the external environment to pass the parameters to
the display subsystem. The code generator will gather all of these and output
the desired code using the vendor supplied target instruction set. The only
other interaction takes place when the designer requests the target device to

- 37 -

perform impossible tasks (such as using more colors than are available),
causing the system to generate error messages to the designer.

This task may be performed manually by a programmer if necessary.
Automatically creating the executable code for the target display device can
sometimes result in slower update rates because automatic code generators do
not generally produce totally optimal code. An experienced programmer can
usually achieve faster update rates. For very complicated and time-critical
display designs, the programmer may need to perform the task of the compiler
subsystem manually. To do so, he must have access to the formal display
description at the symbolic level.

2.7 System Expansibility Requirements

Any system which is used for a significant amount of time will need to be
updated to provide new capabilities. This is why it was specified that the
system be expansible. As the field of display design becomes more advanced,
new requirements may be added.

As specified in the requirements above, the system supports the automated
design and programming of electronic displays. The system does not
automatically design or improve the displays, but only helps the designer by
providing more powerful tools than a sketch pad and pen. After the field of
artificial intelligence becomes more advanced and after the science of
designing optimal displays matures, this system may improve toward suggesting
improvements in the display to the designer.

Such capabilities lie within the foreseeable future. An expert system
could incorporate the knowledge of experienced display designers to recognize
poor designs. It could recognize objects that are positioned too closely,
information that changes too rapidly, and use of too many colors.

Some displays may provide optimal transfer of information to the display
user but may be too complicated to be updated in real time. Another expert
system might be used to help guide the reorganization of segments in the
display so that higher frame speeds may be achieved. This expert system might
recognize nonmoving images and reorder transformations.

Later it may even be possible to have a descendent of this system design
the display with minimal human intervention. The system would prompt the
designer for what inputs are to be provided and what information is to be
displayed and then produce the final product based on previous display
designs. An evaluator would then suggest modifications to the system. These
modifications would be incorporated in the current display and also added to a
knowledge base so that the system 'learns' how to make better displays.

- 38-

3 System Implementation

The requirements presented in Section 2 define an idealized system to
automate the programming of real-time electronic displays. These requirements
were determined to be necessary for the creation of displays, without regard
to whether they were feasible using today's technology. While many of the
requirements are supported by current technology, some require a development
effort in which the cost exceeds the return in savings. Furthermore, some of
the requirements need technological breakthroughs before they can be
implemented. While it is likely that the breakthroughs will happen, the
system is needed as soon as possible and a delay is undesirable. A system
fulfilling most requirements today is preferable over one fulfilling all
requirements in 10 years.

In this section, we present a possible implementation of the system

containing a large subset of the requirements and maintaining usefulness. The
primary goal is to show herein that a useful implementation of the system is
feasible at the present time. A secondary goal is to define an upper boundary
on the amount of developmental effort which must take place by rejecting those
approaches which are more costly than others. We recognize that this
implementation is not the only or perhaps even the best one.

This section contains the following five subsections:

o The Problems of Implementation,
o Data Implementation,
o Process Implementation,
o Hardware Implementation, and
o A Brief Description of System Implementation.

The first subsection, The Problems of Implementation, details the problems
which would be encountered by system developers and suggests solutions to
those problems. The Data Implementation section describes the implementation
of the various data. Process Implementation shows how the processes which
create the data may be implemented. Hardware Implementation contains
suggestions on the selection of hardware which will support the above process
and data implementations. Finally, A Brief Description of System
Implementation summarizes our suggestions for system implementation.

3.1 The Problems of Implementation

First we will explain why some of the above requirementa are too
difficult to implement by describing the current technology and its
shortcomings. Then we will show how these obstacles may be overcome using as
much off-the-shelf technology as feasible. This section is divided into the
subsections:

- 39-

o" Current Technology and Its Limitations, and
" Circumventing These Limitations

3.1.1 Current Technology and Its Limitations

Graphic displays present unique difficulties to the engineer because of
the large number of operations which must be performed within a short period
of time. For instance, to draw a cube the computer must first calculate the
positions of the end points of each edge. These positions are used to
determine which faces are hidden from the viewer. The viewable end points
must be translated, rotated, mirrored, and scaled from the world coordinate
system in which they are defined into the screen coordinates. This results in
the definition of a set of polygons which must be displayed. These
rectangular polygons are then intersected with the clipping boundaries to
create an irregular outline of the face which will fit within the prescribed
limits. Finally, the outlines must be filled in with the appropriate color.
Thus the image of the cube is presented to the viewer.

Each step requires multiplication of matrices and decision making, and
the large number of multiplications required combined with the pixel-by-pixel
nature of the final image would have a significant impact in the computation

-r time required to produce each new display frame. Multi-million dollar
computers exist for which the large number of calculations pose no problem,
but such computers would produce very little payback. As the power-to-price
ratio increases, many of the operations will become more feasible at an
acceptable cost. This is why we differentiate between the ideal and the
practical requirements. The technology is expanding too rapidly to allow
considerations of feasibility to drive the ideal system requirements.

Due to the limitations of the current technology, intersecting the face
of the cube with the clipping boundaries is one of the more time consuming of
the above tasks. This is because every line in the image must be intersected
with the clipping limits. Clipping at the abstract level is the process of
finding the intersection point or points between an equation and the boundary
and then redefining the clipped equation with the intersection points as the

5$ new ends of the lines. Clipping against arbitrary boundaries is not
implemented by current technology because of the complexity of finding the
point of intersection between two general equations. For instance,
intersecting two cubic-spline surfaces would require advanced numerical
techniques similar to those involved in finding zeros of equations. Such
intersections usually involve making an initial guess and refining that guess
to the desired precision. The refinement can require tens or hundreds of
iterations to find one point, let alone the hundreds of points needed by the
system.

Efficient algorithms exist to perform this task, but they apply only to
boundaries which are rectangular and parallel to the coordinate system. These
algorithms compare end points of straight lines with the coordinates of a
rectangle defined from minimum to maximum x, y, and z values. These simple
comparisons allow a large number of lines to be clipped rapidly.

-40 -

-MO-
L i1 :1116. -X

Another operation which is time consuming is that of determining hidden
surfaces in three-dimensional scenes. One technique is to store the apparent
distance of each pixel along with its color. When two pixels collide, such as
when a tree is behind a rock, the apparent distances of each are compared and
the further pixel is thrown away. This is very simple, but many screens have
a rj6%LtJ= of over one thousand by one thousand pixels. Each frame on such
a terminal could mean the storage and comparison of well over a million
distances.

However, methods do exist which quickly determine which faces are hidden
in three-dimensional shapes such as a cube or a pyramid. These methods are
based upon determining if the vector perpendicular to a particular face is
pointed away or toward the viewer. This technique will remove totally hidden
surfaces such as the back side of a house, but does not apply to partially
hidden surfaces such as a tree in front of a barn. Partially hidden surfaces
may be shown in two ways: by using the apparent distance technique defined
above or by simply drawing the hidden surface in full and then drawing the
other surface on top of the hidden one. The latter method of drawing objects
in the background first will always work, but is not necessarily feasible
because of the increased complexity in the code. The code is much simpler
when objects in an image can always be drawn in the same order, and
rearranging the objects would be time consuming for complicated displays.
This simplicity in code leads to much higher update rates.

Transparency could be implemented using a similar technique where the
color of the transparent (or partially transparent) item is given a unique
value. Collisions result in a blending of the colors instead of replacing the
old with the new. However, the required calculations would be even more
extensive since the old color must be retrieved before the new can be
specified and since this would happen on a pixel-by-pixel basis. Another
technique to show transparency is to define a sieve so that only parts of the
background show through the transparent object, giving the effect of looking
through a screen door. Many commercial graphics terminals support overlaying
such sieves in the hardware. This technique does not allow a full range
because only a certain set of sieve patterns are effective; once the holes
become too far apart, the eye separates the two colors. Also, using the sieve
technique to show transparency would not produce a realistic image when
viewing through multiple objects which are partially transparent.

Smoothly shaded surfaces pose yet more problems. Many algorithms exist
today which break a curve into discrete panels and then interpolate the colors
across the surfaces. These algorithms, due to their pixel-by-pixel nature and
the complexities of interpolation, are also too slow to allow images to be
displayed at frame update rates that are acceptable. The mapping of textured
patterns to surfaces is a generalized form of continuous shading and is thus
even more beyond current capabilities.

Finally, showing the diffuseness of an object's surface would require
tracing a set of rays from each light source to the viewer, following each as
it reflects from object to object to determine its final apparent color. Such
ray-tracing algorithms could also facilitate showing transparency, smoothly
shading objects, and suppressing hidden surfaces. However, the algorithms are

- 41 -

too slow for use in real-time environments, even when a supercomputer is used,
due to the probabilistic nature of diffuseness. Many of the traced rays never
reach the viewer because they bounce off the object away from the viewer, so
tens of thousands of rays must be traced to create accurate images.

The above processes are difficult to perform at high speeds because of
the limitations of both the target devices and the graphics terminals.
However, the graphics terminals usually do not have the same capabilities as
the target devices because the latter are often developed especially for a
particular application to take advantage of state-of-the-art--and consequently
more expensive--technology. This means that the graphics terminals will have
difficulty animating some display designs that may be perfectly capable of
being executed on the target devices, especially in the area of the speed at
which the frames are updated.

3.1.2 Circumventing These Limitations

Two approaches are suggested below to circumvent the above limitations on
the graphics terminals. One is to use hardware to implement those operations
which involve large numbers of calculations. However, not all operations can
be implemented in hardware. So the other method of circumventing a limitation
is to identify which requirements are not absolutely necessary at the present
time and postpone their implementation until they are supported by technolcgy.

3.1.2.1 Use of Hardware

The algorithms mentioned above are too complicated and therefore time
consuming to allow them to be implemented in software for real-time
environments using the current technology. However, custom computer chips
that allow these algorithms to be calculated in the hardware of many graphics
terminals provide reasonable performance at a cost-effective price. Many
terminals have hardware which perform the scaling, mirroring, rotating,
translating, hidden surface removal, and simplified clipping operations.
Also, many have hardware which will fill polygons and depth-cue lines.
Furthermore, many support the "double-buffering" mentioned in Section 2.

Many graphics terminals also improve screen update rates by storing the
graphic representations of the objects which comprise an image in "display
lists". A display list is simply a list of high-level descriptions of the
parts of a graphic image. When a particular frame is to be drawn, one command
sent to the graphics Drocessor will cause that processor to draw the frame on
the screen.

Even using the above techniques, many of the other controls and
attributes specified in the requirements section are not supported in the
currently available hardware or are too slow to be of practical use. The list
of unimplemented requirements includes clipping against nonrectangular shapes,
diffuseness, and full transparency ranges. Smoothly shaded imaging is
available, but the hardware is still too slow to support update rates which
would permit the user to evaluate the display properly.

- 42 -

4- - - - - - - - - -

3.1.2.2 Reduction of Requirements

The other option is to identify which requirements may be deferred until a

later time. Given the characteristics of target display devices on which
display designs are currently executed, some of the above capabilities will not

be used in the near future. Of those which could be used, some may be left out

initially in the interest of obtaining the system as soon as possible.

Some of the more advanced attributes and controls specified in Section 2

of this report may be left out. Section 2 implies that there are no limits on
the use of different colors in display designs. However, unlimited
availability of different shades and hues is only necessary for total realism.

For the current display designs, a minimum of 256 colors (where color refers to
the combination of hue, saturation, and gray level) would be adequate. Of

these 256, at least 32 hue and saturation combinations with at least 8 gray
levels should be provided. This represents the bare minimum which would be
necessary--the provision of a more complete spectrum is encouraged.

is Clipping along rectangles which are parallel to the screen coordinate axes
is mandatory. It is needed by any display which might extend beyond the
screen. It is also needed to allow one instrument to partially overlap another

or to allow displays of three-dimensional terrains to occupy the screen with
displays of instruments. However, circles and more general shapes are not as
vital as the rectangular limits.

Transparency can be implemented with only four or five different levels

provided. Though the eye can differentiate between more, such a subset would

allow transmission to the viewer of hidden objects. This represents the true

need for various levels of transparency. More levels reflect the desirability

V, of greater realism, but such realism is not absolutely necessary for the short
term.

Diffuseness also is not absolutely needed for the short term. Diffuseness

promotes realism in displays as objects can be recognized more easily with this

information; but, again, such realism is nonessential for the short term.

Finally, it probably will not be possible to draw displays at the same

rate in a commercial graphics terminal as in the state-of-the-art target
displays. As a minimum, however, the graphics terminal should be able to
achieve at least 25 frames per second when the target can draw 40 to 50 per

second. This minimum allows evaluation to be useful even though the designer

may perceive problems which will not appear in the final product because images

do not move across the screen as smoothly.

All requirements which were not specifically addressed above should be
implemented in full. This especially applies to those which provide ease of
use. The success of any system is very dependent on the user interface.
Making a system difficult to use by ignoringreadily available technologies and
techniques in order to save on development costs is generally a poor practice.
Allowing the user to voice commands instead of typing them would require the

solution of many problems facing those developing speech recognition systems.

- 43 -

4 .
,1- .i l l1r' + + + " + m Y. - --

However, the use of menus or graphics tablets does not require any
technological breakthroughs. These available techniques for providing an

.0 effective user interface must be used to their full advantage.

3.1.3 System Implementation Partitioning

A system which implements the above reduced requirements could be custom
built from scratch, but such a strategy would lead to a longer development
time and higher system cost. A good implementation of any major system is one
which builds upon as much previous work as possible. The desirable nature of
graphics in many applications has lead to much development, and many of the
components of this system are commercially available. Such components may not
fully support the minimum set of requirements, but extensions may be made so
that they do.

In the rest of Section 3, we present a more detailed system partitioning
which takes advantage of the current technology, maximizing strengths and
minimizing shortcomings.

3.2 Data Implementation

This section describes the implementation of the various data in the
system. These include the display design, the formal display description, the
executable display description, the library, the test data, and the target-
specific code. The following sections parallel those in the section on Data
Requirements.

3.2.1 Display Design Implementation

The display design is a concept. Questions of how to implement it are
actually questions of how the system will support the hierarchy, attributes,
controls, and other aspects of the display design. As mentioned in Section
3.1.2.2, some attributes and control information associated with display
designs may not be supported by certain portions of the implemented system.
These portions must be able to expand to include unimplemented attributes and
controls as technology permits.

The only other aspect of the display design concept which needs to be
addressed is how user-defined entities will be supported. They will probably
be defined by computer code written in a high-level programming language. For

*example, if a view of the terrain is needed in a particular display, a
programmer will write a subroutine which generates the scene on the display
device given the relative position of the viewer. Since terrains are complex
and since the amount of data needed to generate the scene would be extensive,
the subroutine will probably need to access a large ata bia stored on such
high-volume media as optical disks. Such a data base could be manipulated by
the system, but this would be very inflexible. Thus user-defined entities
will often need to be generated by computer code. The implementor of the
system must give examples of how to create user-defined entities so that the
maintenance programmer can create those needed for a particular application.

- 44 -

L L ~ ~ ~ ~ . .,t a.1ZAT..IL

3.2.2 Formal Display Description Implementation

As the pivotal data in the system, the form of the formal display
description can help or hinder the implementation of the remainder of the
system. It must be in such a form that it may be easily created by the
editor, easily used by the animator, and easily translated by the code
generator into the instruction set of the target device.

There are several ways in which this formal description may be specified.
One is the use of some special code specified by the implementors of the
system. This is called the 'ad h=c' technique below. Another is to use a
standard format such as the Initial Graphics Exchange Specification (IGES). A
third method is to use a programming language such as Pascal or Ada(*). We
will discuss below the advantages and disadvantages of each technique.

The ad = technique has the advantage of brevity. The special codes
might describe a line from the point (3,23) to the point (10.2,0.4) as
"1,3,23,10.2,0.4", and a circle centered on the point (-1.7,-223,5) with a
radius of 0.04 units as "2,-1.7,-223,5,0.04", where "1" and "2" denote a line
and a cir,-le respectively. This can be very compact because no unnecessary
informatton is provided. The minimum number of symbols needed to specify a
circle is one denoting a circle, those specifying the location of its center,
and one to specify its radius. However, this brevity complicates the
programmer's task when manually writing the code for the target display

because he must recognize the shapes from the symbols alone. If he cannot
remember a particular code, he must look it up in a manual. This can be very
time consuming. To remove this problem, a less compact but more descriptive
format can be used.

The second technique, that of using a more standard format such as IGES,
is essentially equivalent to the first except that it is already specified for

the system implementor. This format can also be compact though it is normally
not quite as compact as the Ad hoe format since the standard format is
designed for any application involving graphics. For example, a line entity
in the IGES format is specified by eighty characters, many more than the
eleven used in the above example. Where this technique loses compactness, it
gains in allowing the system implementor to use previous work. However, as in

the Ad h= technique, use of a standard format necessitates that the
programmer learn which symbols represent which entities. This may be a more
difficult task because the standard format may not support the display
hierarchy, requiring the system implementor to improvise so that this
.information is transferred to the programmer.

The final technique is to use a standard high-level programming language.
In this case, the description of the above line is an instruction such as
DRAW_LINE(3.23, 10.4). This is much more readable to the programmer because

of its directness. However, it is less compact than the Ad = technique.

* "Ada" is a registered trademark of the U.S. Department of Defense (AJPO).

- 45 -

Another advantage of using a standard high-level programming language is that
the animator and code generator subsystems are reduced in complexity. This
will be shown below in the sections describing the implementation of each.

Each of the above techniques can be made to work in the implemented

system. However, the use of a programming language is the most promising.

Wlile the others can be made to be readable, the programming language most
readily enforces readability. Also, it lends itself to using commercially
available software as shown below. The consideration of compacting the
information to save space is not as important as one might suppose. The
increase in space is offset by a decrease in system development costs because

of the use of ncndevelopmental components. Since mass storage of information
is readily available at reasonable costs, considerations of ease of

development and usage are more important. Finally, a programming language
supports specification of the display design at multiple levels.

Once the decision is made to use an existing programming language, the

next step is to determine which language to use. A large number of likely
candidates exist such as Pascal, Ada, and FORTRAN. Essentially, any language
would be capable of formally specifying display descriptions.

Ada presents itself as the best choice for two primary reasons. First,

the Department of Defense (DoD) has mandated that Ada be used for all software
written for use in embedded computer systems. If any other language is to be

* used, special permission must be granted by the DoD. Second, it incorporates
. many advanced features which facilitate the description of display designs.

As a result of the first reason, programmers must be familiar with the

language if they plan to work on DoD software projects, so very little
training will be necessary before they are able to understand the formal
display description. Furthermore, the language will have extensive support
within the defense-related industries, so many of the pieces of the systea

which will work with the formal description will already be developed.

Ada also lends itself to the specification of the formal description

because it incorporates many important capabilities. It was specifically
designed for embedded microprocessor environments such as the target display
devices likely to be used with this system. This means that low-level control
of the microprocessor is readily available. Its multitasking capabilities
allow a clean separation of data gathering and screen updating in the formal
description. But most importantly, its packaging concept greatly reduces the
complexity of specifying the display design at multiple levels of detail.

'Package' are collections of subroutines which perform related sequences
of actions. Each package specifies how other subroutines are to invoke those

within the package and how each subroutine within the package is to be
actually performed. Thus the package concept separates the interface from the
implementation, so the implementation of a sequence of actions can be changed

5%" without affecting the rest of the program. For instance, a package of math
routines might provide a function which evaluates the arccosine of a number
using a series expansion. This might then be used in another function which
calculates the angle between two vectors. If at some later date a polynomial
expansion is determined to be more efficient for evaluating arccosines, the
new method could be implemented without affecting the angle evaluation
function in any way.

46

%*5%

-- 46

The packaging concept is useful in this application because of its
ability to express the layering of the formal description. To draw a cube,
one would invoke a DRAW_LINE subroutine which might in turn invoke a
DRAW_POINT subroutine. Hence, the display is defined at the level of a cube,
a sequence of lines, and a set of pixels. Furthermore, if a particular target
device already knows how to draw a line, the implementation of the DRAW-LINE
subroutine will be an execution of the appropriate instruction instead of a
series of calls to the DRAW_POINT subroutine, without changing the drawing of
a cube. Each target device would have a set of packages which allow the
system to build the display design on that target's screen. Ada thus becomes
a "virtual interface", i.e., an interface which allows the formal description
to be target independent.

3.2.3 Executable Display Description Implementation

This will be a file of machine-level instructions for the target display
created by the code generator subsystem. This file may be transferred to the
target display device in any one of several ways, depending on the
installation and the requirements of the particular device. One method is to
use software which transfers files from the design system to the target device
over a direct cable link. Another is to load the executable code into a
programmable read-only memory (PROM) device which would then be placed in the
target display device. These are two of the standard techniques used in the
industry when programming embedded microprocessor devices. There are many
other methods, and the choice of which to use will depend heavily on the
particular situation.

3.2.4 Library Implementation

The format of the library will be determined by the needs of the editor
subsystem. It will be specified by the implementor of the system.

3.2.5 Test Data Implementation

The format of the test ata is determined by the needs of the animator.
It will be specified by the implementor of the system.

Test data may be created in any one of several ways: by passing a
magnetic tape recording of an actual run of the various subsystems through a
program which filters out all unnecessary data, by gathering the data from the
various subsystems in a simulation environment, by having a host computer
simulate the generation of test data from calculations, or by the user
interactively entering new values for data points in the proper sequence using
a special program.

- 47 -

These various techniques allow the user to quickly generate data to test
a particular design under a variety of conditions: when the test data must be
very realistic, when he must test 'impossible' conditions, and when no actual
equipment yet exists from which to gather the data. Such flexibility will
improve both the accuracy and the speed of the evaluation process. The system
needs to be open ended to allow a particular facility to devise its own
techniques in data generation.

3.2.6 Target-Specific Code Implementation

The target-specific code will be a set of Ada packages which state bow
each target draws the various entities such as points, lines, and arcs as
mentioned in Section 3.2.2 above. Each of these packages will be written by a
maintenance programmer. Alternatively, the vendor of the target display
device can write these packages. The key is that once the problems are solved
for a particular device, they remain solved. The target-specific code also
contains data-gathering subroutines for use in the final environment. These
are also created by a maintenance programmer.

An important aspect of separating the formal description from the
target-specific entity-drawing routines is that this allows the programmer to
use more than one approach toward actually drawing the entities. Routines
which draw lines, for instance, can either draw very accurate lines slowly or
less accurate lines quickly. On raster graphics display devices, quickly
drawn lines have a "stair-step" appearance because of the discreteness of the
pixels. "Dithering" algorithms exist which draw better lines by controlling
the intensities of pixels around the lines as well as those directly on the
line, varying the intensity of a pixel with its distance from the true line.
Dithering algorithms are slower but produce higher quality images. The
maintenance programmer, when providing the routine which draws a line, can fit
the tradeoff between accuracy and speed to the needs of a particular
application.

The implementor of the system needs to provide examples of the target-
specific code so that the maintenance programmer will know how to add a new
target device. The examples also need to show different ways to draw such
entities as lines and circles with tradeoffs between speed and accuracy.
Furthermore, the implementor must clearly document the interface between the
formal display description and the target-specific code so that the programmer
can work at all levels of complexity from the pixel level up to the module
level. These interfaces are also needed when the programmer defines entities
for use by the system. Finally, examples of data-gathering routines need to
be provided to further assist the maintenance programmer.

3.3 Process Implementation

This section describes how each of the processes involved in producing
the above data (the editor, animator, and code generator), my be broken into
subprocesses to make use of nondevelopmental software. Software is available
which fills part of the need but not all, and the following sections identify

- 8 -

which parts can be filled with existing software and which cannot. A more
detailed partitioning is shown by a figure for each process to show the use of
nondevelopmental software. These figures use the same symbology as that in
Figure 2-2.

3.3.1 Editor Implementation

The editor subsystem may be divided into three distinct pieces: a
graphics editor, a dynamics editor, and a translator. This is shown in Figure
3-1. The graphics editor handles the definition of the shape of objects with
their attributes while the dynamics editor handles the specification of
attributes and dynamic controls at the segment level. This division allows
the use of comercially available graphics editors. Furthermore, the output
of the editor subsystem would not go directly to the formal display
description, but instead goes to its own data base. This allows the editor to
use a more efficient data-base format than that in the formal display
description, and it also allows the use of nondevelopmental graphics editors.
While this data base is formal, it is not readable by a programmer. Thus, a
translator is needed to produce the formal display description.

InputDisplaU
Devices Edio DescriptionDevics I~iforTranslator

__ _Description

~Data Base

Graphics
Terminal DunamicsEditor D Formal

__- Description
Librarqj

Figure 3-1 The Editor Subsystem Partitioning

3.3.1.1 The Graphics Editor

The graphics editor handles defining the shapes of objects and their
attributes. Several types of editors which manipulate graphic images eXist.
These include programs which allow the user to *paint* on the screen and
computer-aided design programs. None 0?' these allow specification of dynamic

-9

LME

information to the full extent needed by the designer, hence a separate
dynamics editor is needed to provide such capabilities.

Graphic painting programs are widely available for personal computers.
These allow the user to "paint" an image on the screen by changing the colors
of the individual pixels in a manner which imitates the artist's paintbrush on
canvas. What these programs gain in simplicity is lost in power. These
programs work at the pixel level and not at the entity level. The initial
drawing of images is very eas* , however, moving an entity on the screen can
involve writing over the old with the color of the background and then
redrawing the new in the correct position. These programs store the drawings
as a copy of the bit map of the screen, where a bit map stores the color of
each pixel and nothing more. This storage technique leads to simplicity
because each command only effects the colors of individual pixels. More
complicated techniques store more abstract information and require more
bookkeeping to be done in each change to the drawing. Bit-mapped storage
methods lead to difficulties in transmitting the display design to the
programmer at many levels.

The major difficulty is in determining what entities make up a display
design from only the knowledge of colored pixels. It is very difficult to
determine from a picture of two connected squares if the image is actually one
of a cube. Line drawing analysis for image recognition is an important issue
in the field of artificial intelligence, and the associated problems are only
partially solved. Other disadvantages include the fact that fine adjustments
are very tedious and difficult, and that personal computers rarely support
very high resolution or large numbers of colors because they are designed to
be affordable for individuals, not to represent the state of the art in
technology.

The second possibility for a graphics editor is to use a computer-aided
desig (CAD) package. In the engineering field, these packages are used to
design and model everything from electronic circuits to car bodies. While
many CAD packages also do extensive analysis of the models, this system will
only utilize the ability to create and modify graphics. The fundamental
characteristic of any CAD package is that it is a powerful graphics editor.
The implementors of CAD packages have already solved the problem of drawing
and redrawing pictures quickly and easily.

CAD packages deal with entities at the entity level. An entity is
manipulated as an entity as long as it exists, not just until its initial
position and size has been chosen. Storage of symbolic, abstract information
is the major advantage of CAD packages. Internally, a circle is represented

* by some tag which denotes the entity combined with its center and radius.
This is very close to the ad h=c description of the formal display description
as described in Section 3.2.2. Thus, when the designer wishes to move the
circle, he may pick up the circle and drag it across the screen to its new
position, without manually erasing the old image. CAD systems extend such
operations from the level of the entity to the level of a group of entities so
that moving a representation of a vehicle, for instance, does not mean whiting
out the old image line by line, curve by curve, just to redraw it somewhere
else. Since this knowledge of entities and groups of entities is stored in
the data base, recognition of these in the display design is very simple. The
one disadvantage of the CAD packages is that they are expensive because of the
amount of effort needed to develop a graphics editor at the entity level.

- 50 -

%

r z L1 k. --_,

Given the advantages of using a CAD package, the painting programs
available on personal computers are not adequate. Use of a commercially
available CAD package will drastically reduce development costs by allowing
its designers to solve the difficulties of letting the user easily draw
graphic images.

The CAD package chosen must have several important characteristics.
First, its internal data base must be accessible. This means that the formats
of any files must be readily available to the implementors of the system.

'Second, it must meet the above requirements for ease of use or allow
improvements to the user interface. Third, it must support the display design
requirements as specified in Section 2. Fourth, it must allow the system
implementor to make minor modifications and extensions which enable the
package to be incorporated in the system. Extensions need to be added to
provide for user-defined entities, to limit the available colors, to specify
the target display size, and to allow the editing of dynamic controls. These
extensions are described more fully in the following paragraphs.

Some user-defined entities need to be specified by software because of
their complexity. For example, a three-dimensional map of the terrain might
be defined by a complex data base. This data base then needs to be
transformed in an efficient manner into the images placed on the screen. Some
way to interface these user-defined entities with the CAD package needs to be
developed.

Limiting available colors and specification of target display size allows
the user to impose constraints on the display designs so that they are optimal
for a particular target. Such constraints need to be removable because of the
necessity for flexibility in the display designs. The user must be able to
state on which target the display design is to be implemented by giving the
name of the particular target device. The CAD package needs to be extended so
that those constraints are enforced in display designs.

* At least three ways need to be provided to specify the chromaticity
aspect of color. One is by entering a name. The list of possible colors
includes white, black, red, blue, green, and others added by the designer as
needed. This will make it simple to enter commonly used colors. Another
technique is to pictorially select a color from such a chart so that the full
spectrum may be used. A third is to enter indices into a pre-defined scale or
chart, such as the 1931 CIE (Commission International de l'Eclairage, or
International Commission on Illumination) (x,y) Chromaticity Diagram.
Likewise, gray level needs to be specified either by name--such as bright,
normal, or dim--or by an index into a scale.

Finally, specification of the dynamics will require a custom editor.
Several CAD packages provide for small, repetitive movements in images, but
these movements are not general enough for this application and the
specification is too difficult for all but the more advanced users. Hence a
separate dynamics editor is needed and the CAD package must be extended to
allow smooth transitions from one part of the editor subsystem to another so
that user is not aware of these transitions.

-51-

3.3.1.2 The Dynamics Editor

The dynamics editor supports the specification of changes in attributes
and positions of the segments in the display design. There are several ways
in which this can be specified. One is to have the designer create Ada source
code. Another is to trace the movements made by the designer and then
interpret these movements into commands. A third is to use special icons to
specify the paths for various parts of the segment. The last is to have the
designer create controls using a specially developed language.

One possible way to specify the dynamics of a display is to have the user
write Ada source code which invokes the appropriate commands in the
appropriate sequence. Thus he might write a section of code which says "move
the segment to the right three inches and then draw the 'ship module'". While
allowing full control of the display, this increases the time novices must
spend before being able to design even the simplest displays. Learning to

specify motion might take weeks or months instead of minutes. While this
technique allows entities and segments to be incorporated into display designs
easily, it is no different than the current method of creating displays in
that there is no intermediate step providing communication between the
designer and the programmer.

Having the system track the designer's movements is at the opposite end
of the spectrum. Using this technique, the designer specifies that a needle
(and the segment in which it is drawn) is to rotate by moving the cursor in a
circular motion. While simple, this method has several disadvantages. One is
that it would be difficult to control the motion precisely. Another is that
making minor modifications to the motion would be very difficult--the user
would need to re-enter the entire movement to make any changes.

This latter technique can be improved by using the graphics editor to
specify the motion path with special icons. A set of points on the segment,
one for each dimension, are chosen as key points. For each point, a path is
drawn from a starting position to an ending position. An expression is
specified (such as [(TEMPERATURE - 4) 0 5]) which governs the motion.
Finally, values are given which correspond to the starting and ending points
of the path.

The advantage of this technique is in its simplicity and preciseness.
The disadvantage is that it does not allow full control of the sequence of
transformations. It is very difficult to specify that a motion is to take
place only if certain conditions are met. Furthermore, it may be necessary to
limit the types of motion which may be specified to reduce the complexity of
translating the paths into the formal description. Also, such a technique
only applies to motion, not to chromaticity or other attribute changes.

The final method allows the user to specify all dynamics in a modifiable
form without resorting to writing Ada programs. This is to write code in a
special graphics control language using a custom, menu-driven editor. This
technique is preferable to writing in Ada because the special language can be
tailored to the needs of the system. Ada may be intimidating to the novice,
but a graphics control language can closely parallel English so that it is
more understandable. Also, Ada is not necessarily optimal for use by menu-
driven editors because it was designed for general programming, whereas a

- 52 -

? .. - -

special language can be made to be optimal through the use of instruction
formats which lend themselves to generation by templates.

The graphics control language will provide full control of display
dynamics. It needs to incorporate the major control constructs of any
programming language: sequential grouping of actions, conditional control of
actions, and conditional looping. It also needs to incorporate the other
major features such as variable manipulation and function invocation.
Finally, it needs to support description of all of the dynamics which are
supported by the system.

The best choice is to provide both of the above two concepts so that all
capabilities are available. As the designer specifies a motion path for a
segment, the corresponding graphics control constructs are generated
automatically by the system. Then he uses the menu-driven editor to modify
and embellish the dynamics, giving him full control. Hence both simplicity
and full control is provided.

It is important that the formal display description be error free. By
this we mean that nothing in the description should violate the rules that
make it formal. For example, if two points are needed to specify a line,
supplying only one point produces an error. This consideration is especially
important when using an editor to create dynamic descriptions with a graphics
control language. The editor must diagnose and help fix any mistakes of the
sort described above.

3.3.1.3 The Translator

The output of the graphics and dynamics editors goes to a data base which
is in a format recognized only by the two editors. This format will be
dictated by the choice of a particular CAD package. While this editor data
base will be formal, it will not be readable by a programmer. A translator
will thus be necessary to create the formal display description.

This translator will be a further software addition to the editor
subsystem. Its existence needs to be totally transparent to the user, and it
will run concurrently with the graphic and dynamic editors, translating data
as they become available. This minimizes the delay between finishing an
editing session and animating the display design. Ideally, the user will be
able to switch instantaneously from the editor subsystem to the animator
subsystem so that he can create an idea and immediately try it out. Though we
recognize that this may not be feasible given today's technology, effort must
be made to reduce any delays.

3.3.2 Animator Implementation

The animator 3ubsystem must transform the formal display description into
moving images on the graphics terminal. To accomplish this, the animator
subsystem may be olvidad intc two distinct pieces: a compiler and a
processor. This is shown in Figure 3-2. The animation compiler translates

- 53 -

-- J.

the formal display description in whatever way is necessary into some format
which will allow the processor to draw the images on the graphics terminal at
optimum speed. The processor does the actual animation, combining the stored
test data with those generated by the variable input devices as directed by
the designer. The output of the animation processor goes to the same graphics
terminal as used by the editor subsystem so that the designer does not have to
switch from station to station. Likewise, the input devices used by the
animator are the same as those used by the editor.

Formal Oisplay Input Graphics
Description Devices Terminal

Animation Animation

D ProceTeot

Animation Test
Data Data

Figure 3-2 The Animator Subsystem Partitioning

3.3.2.1 The Animation Compiler

If Ada is used for the formal description of the display design, the bulk
of this subprocess will be performed by an Ada compiler. The output of this
animation compiler, i.e. the animation data, is a computer program which,
when executed, will draw the images on the graphics terminal.

This compiler will be integrated with the translator in the editor
subsystem so that as each module is defined, that module becomes available to
the compiler. Thus the user will never need to wait for more than one module
to be compiled before starting the evaluation of the display design.

3.3.2.2 The Animation Processor

This portion of the animator subsystem actually animates the display
design. It is simplified by the use of Ada since it consists of the animation
data, the test-data-gathering routines, and the input device handlers. After
combining the above, the resulting program is executed. During execution,

- 54 -

test-data-gathering routines collect all of the data for each individual frame
and provide it to the rest of the program. This closely parallels the method
of drawing the images in the target display device.

The input device handlers allow the user to control the data gathering,
specifying that the gatherer do such things as throw away a certain amount of
the data (skip ahead) or that it reads the value of a particular input-data
parameter with a variable input device instead of from the test-data file. By
controlling the test data, the user may easily control the animation process.

Due to the limitations of hardware capabilities, it may be difficult to
allow full control of certain forms of test data. Reversing the order of
reading the test data or skipping backward through the data improves the
evaluation phase by allowing the designer to quickly repeat a certain sequence
of events. However, some forms of test-data storage do not allow such
controls. For example, it is usually impossible to read a magnetic tape in
reverse. Where attempting to implement such capabilities for a particular
test-data source will seriously impact the time spent developing the remainder
of the system, the capability should be left out if it will not seriously
impact the evaluation process.

The methods used in generating data need to be very well documented so
that a maintenance programmer may implement new techniques as needed.

An important point to remember in the design of this system is that it
must be of general usefulness, not designed around any particular set of
displays. This generality means that the graphics terminal's hardware must be
very powerful to overcome the limitations of the software. Because of this
generality, the Ada source code created by the translation from the editor's
internal data base to the formal display description will not be able to take
extensive advantage of special graphics tricks. The speed of the animator

4/, must come from a combination of a generally good translation and from very
high performance hardware within the graphics terminal.

3.3.3 Code Generator Implementation

Finally, the code generator subsystem may be partitioned into a target-
specific compiler and linker as shown in Figure 3-3. The compiler translates
the formal display description into the instruction set of the target device.
The display description code is then merged in the linker with the target-
specific code, which contains calls to high-level graphics and mathematics
routines on the target device if they exist, to produce the executable display
description. The target device is specified by name, and this name is used by
both processes seen in Figure 3-3 to generate the code for the correct target.

3.3.3.1 The Target-Specific Compiler

Again, the code generator subsystem will be simplified by the use of Ada
in the formal display description. An Ada cross compiler may be used to
create the display description code, where a cross compiler is a compiler

-55-

Formal Oisplatj

Descriptipna Target Speci-fic Code

iDescription

\ / Oispla J

Figure 3-3 The Code Generator Subsystem Partitioning

which runs on one computer but generates machine code for another. Since the
Department of Defense has mandated the use of Ada, Ada cross compilers should
exist for any microprocessors used within the target display devices. A
different Ada compiler will be used for each different type of target, and
support software will execute the correct compiler based upon the name of the
target device.

3.3.3.2 The Target-Specific Linker

Once compiled, the display description code will be linked (i.e., merged)
with the target-specific code. This process is dependent upon the form of the
output of the target-specific compiler, so a different one will be needed for
each different compiler. Normally such a linker is available for each
commercial compiler. Support software will control which linker is used in a
particular case. In some instances, but not always, the link step will be
performed by the software package that does the compilation.

3.14 Hardware Implementation

This section describes possible implementations for the input and output
devices and the system computer. This section is purposefully last because of
the need to have hardware choices driven by the data and process
implementations.

-56-

;J111. . ~ .-

3.4.1 Input Device Implementation

As mentioned in Section 2.5.1, the input devices must have two important
characteristics: ease of use and familiarity to users. Another requirement
is that those which will be used in the editor interface smoothly with the
commercial computer-aided design (CAD) package. In this section, the devices
which fill the needs most closely are presented.

Three types of inputs are needed for this system. One is for text and
numeric data, the second is for positional data, and the third is for test
data created by variable input devices during animation. For the text, the
keyboard and speech recognition systems will be considered below. For the
positional information, the mouse, graphics tablet and pen, graphics tablet
and puck, light pen, joystick, thumb wheels, and the possibility of developing
other devices will be considered. For the test data, different forms of
potentiometers will be considered as well as the possibility of using the
positioning devices.

Keyboards are the most widely used devices for inputting characters. Due
to a long history of use in typewriters, keyboards are very familiar to most
potential users. Voice input systems represent a strong alternative. They
have the advantage of more rapid transfer of information to the system. The
disadvantage is that they are still under research and practical
speech-recognition systems are several years off. Hence the keyboard is the
most likely device for the short term. However, the system should be
implemented so that once the voice input becomes available, it may be
integrated with a minimum amount of redesign.

As mentioned above, there are many ways to input positional information.
The mouse is a small box which tracks its own motion through a ball or
reflected light to move the cursor on the screen. If the mouse is moved
without touching the desk top, the cursor does not move. The graphics tablet
reads the position of a pen or puck to place the cursor. When the pen or puck
is lifted, the cursor jumps to wherever it is put down again. The difference
between the pen and puck is that the former looks like an ink pen while the
latter is more similar to a mouse. The light pen has a light beam which is
pointed directly at the screen of the graphics terminal so that no cursor is
needed. The joystick controls the cursor by "steering" it about the screen,
moving the cursor whatever direction the stick points. Thumb wheels have a
separate wheel for vertical and horizontal cross-hair lines, and a thumb and
finger are used to move each line.

The advantages for the various devices are as follows. The light pen is
useful for pointing directly at an object on the screen. The mouse is the
most familiar device because of its prevalent use with personal computers.
The graphics tablet and thumb wheels allow for precise placement. Thumb
wheels are particularly easy to switch to when entering a large amount of
text, since they are often attached directly to the keyboard.

The disadvantages of each are as follows. Those with separate pens such
as the light pen and graphics tablet with pen make it difficult to switch from
the keyboard to pen and back. Graphics tablets take up a large amount of desk
space. The light pen is tiring to hold for long periods because of its weight
and the awkward position in which it must be held. The mouse can be difficult

- 57 -

to use when moving long distances across the screen because of limited desk
space. The light pen and mouse are difficult to use when attempting fine
control. The joystick can be slow because the cross hairs are "steered"
instead of moved directly.

Since each of the above devices has its advantages and disadvantages,
provision needs to be made for as many as possible. In particular, the mouse,
graphics tablet and puck, and thumb wheels provide good control without too
much frustration. Many CAD packages allow the user to make the decision, and
the rest of the system should also allow such choices.

Alternatively, new devices might be developed. One example is a ball
held in the air which operates as follows. Moving the ball up and down moves
the image up and down on the screen, side-to-side motion moves the image side
to side on the screen, back-and-forth motion zooms the image in and out, and
twisting and rotating the ball twists and rotates 3-D images on the screen.
This ball will be very good at positioning the image for viewing from all
directions, but would be poor at specifying accurate points.

Another useful input device might be a digitizer which uses lasers to
read the three-dimensional coordinates of an object. Such a box will make it
simple to input accurate models of airplanes, vehicles, and the like. The
system should be open ended enough that it allows such devices to be included
at a later date.

As mentioned above, the various forms of potentiometers could be used to
input test data during the animation phase. More than one vendor has a box
which has several knobs to control several potentiometers. Each potentiometer
could be treated as a separate source of test data to allow simultaneous
control of several parameters in the display design. Some of these devices
have small, six to eight character displays, which could be used to note which
knob is tied to which parameter or to display the value itself. Since these
devices usually interface only to the graphics terminal made by the same
manufacturer and since their capabilities are not as significant as other
considerations, undue emphasis should not be placed upon selection of a
variable input device.

The positional input devices such as a mouse or light pen could be used
to provide the functionality of the above potentiometer box. Techniques could
be developed to allow a mouse to control several parameters. An up and down
motion could change one parameter while a sideways motion would change
another. Using such devices as the graphics tablet or light pen would
minimize the amount of equipment at the designer's workstation at the expense
of being able to control only a few parameters.

3.4.2 Output Device Implementation

In this section, we present possible devices which output human-viewable
pieces of the display design.

-58-

3.4.2.1 Hard-copy Output Device Implementation

Several devices are available which output to transportable media. These
include printers, video cassette recorders, and photocopiers.

Literally hundreds of printers are available with many different
capabilities at many different prices. Characteristics which influence the
choice of a printer include colors available, precision, speed, clarity, price
and size of paper used. Very few printers provide as wide a palette as many
of the commercially available graphics terminals and this could pose a problem
in some situations. Many printers draw with such precision that full size
printouts of cars are accurate to within fractions of a millimeter. Less
accurate precision is needed by this system since the printouts will be used
for general information transfer, not details. Likewise, the printouts do not
need to be large as little need exists for wall-sized printouts of 12-inch
square display designs.

Another technique for storage and transmission of display designs would
be to use a video cassette recorder (VCR) to tape the images on the screen of
the graphics terminal during the animation process. This normally works by
attaching the VCR to special output leads from the terminal. This is useful
when those who must evaluate a display design cannot come to the facility in
which the graphics terminal is located. Due to the bandwidth of the tape, the
taped images may not provide as high a resolution as the original. This
technique provides the best way to store and transmit accurate representations
of the display design concept.

Finally, some manufacturers produce devices that make a direct photocopy
of the images on a graphics terminal without the use of a camera. These are
preferable to paper printouts when very accurate renditions of the display are
needed to show the effect of pixel resolution on the display.

Of the above three, provision for paper printouts is the most important.
It is not necessary that the implemented system interface to either of the
other two devices. If a video cassette recording is absolutely necessary at a
particular facility, one can use a video camera to record the images directly
off the screen. Likewise, the photographs can be created with the use of a
good quality photographic camera.

The staff at each site in which the system is installed will need to
determine which hard-copy outputs are needed for their application. The
system implementor should provide a listing of the suitable printers and other
hard-copy devices along with their capabilities and prices.

3.4.2.2 Graphics Terminal Implementation

There are two primary requirements for the graphics terminal: it must
interface with the chosen computer-aided design package and it must be able to
draw graphic images on the screen as quickly as the current target display
devices. The following features are necessary on the graphics terminal in
order to meet current capabilities and needs:

-59-

o 1024 by 1024 pixel resolution, and

o 256 colors (including at least 32 different chromaticity values at
8 gray levels).

The capabilities of the graphics terminal need to match as closely as possible,
if not exceed, those of the currently available target display devices in
screen update rate, and the ability to display images which meet the
requirements. It should also provide a pixel resolution which is as fine or
finer than the target devices.

As mentioned above, some graphics terminals implement various functions in

hardware, and those terminals are recommended. In Appendix C we list and
compare the capabilities of several terminals which provide such hardware.

3.4.3 Host Computer Implementation

As a final consideration, the host computer for the system must also have
certain features. Given the large amounts of memory which will be needed to
quickly update complex displays, at least a 32 bit machine supporting virtual
memory will be required for the host computer. Virtual memory allows a program
to be larger than the actual size of the memory, allocating sections of disk
storage when the program is larger than physical memory. Many of the current
host computers provide over eight million bytes of memory, but it cannot be
guaranteed that this will be enough in every case. Since the amount of storage
available on a disk is typically several orders of magnitude greater than

physical memory, virtual memory goes a long way toward postponing problems of
running out of memory. Thirty-two bit architecture is needed for the same

reason: to provide rapid access to large amounts of data storage. In general,
the host computer must provide as much memory as possible and execute programs

fast.

Another requirement of the host computer is that it interface to the
chosen graphics terminal and the chosen computer-aided design package.
Furthermore, if Ada is chosen for the formal display description, an Ada
compiler must be available for the host. Developing a custom Ada compiler will

increase the price of the implemented system beyond reason.

Finally, it must be possible to interface the host computer to the needed
output devices and to other computers. These interfaces must be fast,
especially those to other computers, if those computers are to generate test
data during the animation phase.

Possible criteria for the choice of a host computer include items other
than the above necessities. Tape drives will be useful for making archival
copies of format display designs, target-specific code, etc. This will allow
simple re-entry of the information in the case of the loss of data as when a
disk becomes corrupt. Also, the ease of use of the operating system provided
with the host must be considered.

- 60 -

1e =

3.5 A Brief Description of System Implementation

This section summarizes the possibilities for system implementation
described in the preceding four sections. Two very important decisions drive
the final system. One is the decision to use a coumercial computer aided
design (CAD) package to do the editing of the object shapes. The other is the
decision to use Ada in the formal display description.

Since the editing of object shapes is provided by the CAD package, another
editor must be developed to support the dynamic aspect of display designs.
This editor should allow both graphical and textual specification of the
dynamics. Also, since the CAD package supports its own data base, a translator
is needed to produce the formal display description.

Once the formal description is created, a commercially available Ada
compiler for the system computer will be used in the animator subsystem to
provide motion to the display design. This compiler will generate the
system-specific code which updates the screen of the graphics terminal at rates

exceeding 25 frames per second unless the designer has slowed down the anima-
tion process. With the use of Ada, the only development involved in
implementing the animator subsystem is in writing test-data-gathering
subprograms and possibly developing software which performs minor modifications
to the formal description to optimize it for the graphics terminal and host
computer. In order to achieve 25 Hertz frame-update rates, the use of a
powerful graphics terminal which provides transformations, clipping, and other
algorithms in the hardware is needed.

Finally, after the display design is seen to be optimal on the graphics
terminal, the code-generator subsystem automatically creates the program which

will be downloaded into the target display device. The bulk of the processing

is done by target-specific Ada compilers and linkers. Hence the development for
this subsystem is limited to building an environment for the compilers and the
programmer-written target-specific code. This subsystem uses the Ada packaging
concept as a virtual interface between the generality of the formal display
description and the particular features of the target device. The maintenance
programmer will write data gathering routines for the particular application.
He will also write and maintain the routines which draw entities on the screen
of each target device at a particular facility.

- -61

-61-

4 Conclusions and Recommendations

In this report, the system requirements and top-level design have been
specified for a system to support the design and automated programming of
electronic displays. The requirements were determined for an ideal system not
limited by current technology.

To support the creation of display designs, a hierarchy of levels was
created with special capabilities and attributes attached to each level. The
created display designs are expressed concretely in the formal display
description. The formal description, when combined with test data, allows the
designer to evaluate the display design. Once the display design is optimal,
the automatically generated executable display description my be loaded into
the target device for use in simulators, aircraft cockpits, command and
control centers, or anywhere large volumes of data must be presented

* graphically at high speeds.

The system was partitioned to support the creation, test, and compilation
of the display designs. This division of the system into an editor, animator,

and code generator allows the use of commercially available hardware and
software. Once the requirements for the editor were defined, it was seen that
many of the problems associated with creating and modifying graphic images are
solved in computer-aided design packages. This saves the development of tens
of thousands of lines of computer software.

Similarly, once the requirements for the animator and code generator were

specified, it was seen that the use of Ada to formally describe the display
design meant that these processes could make use of Ada compilers. This again
saves the development of large amounts of software.

In Section 3, it was noted that current technological limitations
preclude the full implementation of all attributes and controls. However, the
manlority of them, including those which are the most important, can be
* 'illed at the present time. The modularity of the system design will

able additional ;apabilities to be added with minimal impact upon the
initial design.

The system may be feasibly built at the present time for a reasonable
cost by making extensive use of nondevelopmental hardware and software. The
benefits to be gained by using this system are great, and it Is recommends"
that a Phase I effort be funded to specify the detailed hardware and softw
requirements, create the complete system design, and implement the system
soon as possible.

41

APPENDIX A

GLOSSARY OF TECHNICAL TERMS

The terms In this glossary are defined an they are used in this report,
and do not necessarily agree with their use outside of this context.

a 1ar: The portion of the system that allows the designer to evaluate the
display design by seeing it change on the screen in real time, simulating
its appearance In the target envlroment.

aLLr4J.t&: An Item of information which is associated with a graphical Image
and is distinct from the shape of the object. Examples of attributes
include line texture and color.

2 : A matrix containing the same nmber of elements as there are pixels
on the display screen. Each element in the matrix in assigned a color,
and the value of each element in the matrix can then be mapped to its
corresponding pixel on the display screen.

-- sz-AL~jg 4a L J = &"kas: A software package that permlts its user
to create and modify graphic representations of two- and
three-dimensional objects.

ahLLr : When used In the context of a hierarchical structure, such as
segents nested within other segments, the *children" are those objects
which are lower In the hierarchy than the object of reference. An
ezample Is the relationship between two people as soon on a family troe.

: The portion of color not associated with gray level.
Chromaticity is further broken down into he and saturation.

aLL2jM bauaao: A closed two- or Uhroe-disensional shape that encompasses
an ares or volume outside of which the entity or segment to which it
applies will be clipped, I.e., not drawn.

d. When used as a roun, it refers to a computer program (either a human-
or menine-readable program); when used as a verb, it refers to writing a
.oSpu ter program.

gg& The portion of the system that transforms the formal display
description into the executable display description.

color: The attribute of visual experience that can be described as having
quantitatively specifiable dimensions of chromaticity and gray level. It
does not include the portions of the visual experience dealing with
extent (size, shape, etc.) or duration (movement, flicker, etc.).

rAHr~d,.n& AyAtom: A set of three orthonormal vectors defining a set of axes
labelled x, y, and z which allow the unambiguous determination of the
position of points in space. A local coordinate system for a segment is
specified by placement of origin, orientation of axes, and the
measurement system in use.

a.a Ias=: A data file containing a usually large number of data records
which are connected and can be cross referenced by various fields within
the records.

-g =ga: The person who creates the concept of a display and transforms it
into a display design.

diffusenss: The attribute that specifies to what extent light from a light
source will be specularly or diffusely reflected from a surface. It

essentially defines the 'texture' of a surface, i.e., how smooth or rough
it appears.

.ADLU : The time-varying visual mapping of the state of the environment onto
the target device screen. The display is a sequence of static frames
drawn by the target device based on input data values, and the impression
of motion is created by the frames being displayed at a sufficiently
great update rate.

ALaLay guA&=: The abstract concept or idea describing how the visual
mapping of the state of the environment will occur based on the values of
and changes in the input data.

ay co nXlrgs: The comsanda attached to a segment which control where on
the screen a segment will be displayed as well as whether the segment
will be displayed. These commands may also specify the format of
displayed numeric and textual data. Examples include rotation about and
translation along an axis.

AdLIJ: The process of creating and modifying data; in the context of this
report, the display design.

adlar: The portion of the system which transforms the commands representing
the display designer's idea of the display into the display design.

njLJU: The smallest graphic object manipulated by the graphics editor.
Examples include lines, circles, and cubes.

zADA : The concrete representation of the display
description as an executable computer program. It is also referred to as
the executable description.

- 64 -

fZ= style: The attribute which specifies the particular set of shapes to be
used in displaying text and numerals. Examples of font styles include
italics, gothic, etc.

rorm QsUI decito: The concrete representation of the display
description expressed in a high-level programming language. It is also
referred to as the formal description.

frame: The static assemblage of images filling the screen at any one instant
in time which represents the state of the environment based on the
current input data values. The rapidly changing sequence of frames make
up the display.

SraPAL= termin1: The output device in the system which allows the designer
to visually monitor the display design during the creation phase and to
evaluate the display during the test phase.

srar level: The portion of color not associated with chromaticity. The gray
level is the measure of the brightness or lightness of an object or a
pixel.

Am: The portion of chromaticity that can be described by such words as
'red', 'green', or 'blue'. It specifies the wavelength(s) of light being
emitted or reflected from a surface.

An: A collection of entities stored in the editor library and manipulated
as a unit.

AmA: The static visual representation of an object or group of objects
displayed on the display screen.

d&Wta La,: In the context of the target environment, the data passed to the
target display device by external equipment such as sensors, other
computers, etc. which are used to determine the appearance of the
display.

A.nut deviees: A device used by the designer to give commands to the system.
Examples include a keyboard and a mouse.

se1flt: The total set of microprocessor-specific ommands that are
available for use in a machine-language program written for a particular
computer.

11hrary: The data base used by the editor to store previously-defined
portions of displays for later retrieval and reuse in other displays.

modue: A collection of one or more segments which have been named and which
specify the inputs to the display from the environment.

mode ±naton: The act of including a module within a segment by
referencing it by name.

- 65 -

AFAIAAKAAJIJIL " alil

novice: A designer or other user of the system who is unfamiliar with the use
of the system or computers in general.

Dackaga: A collection of subroutines that perform logically-related tasks.
Packages are usually associated with the programming language Ada.

prent: When used in the context of a hierarchical structure, such as

segments nested within other segments, the "parent" is that object which
is higher in the hierarchy than the objects of reference. An example is
the relationship between two people as seen on a family tree.

2A&n: A contraction of 'picture element'. The pixel is the fundamental
entity in graphics. It is the smallest resolvable area of a display
screen, in which an average color value is determined and used to
represent that portion of the scene being displayed. Pixels are arranged
in a rectangular array to form the entire display screen.

:riority; The attribute which specifies the importance attached to displaying
a particular segment in the event that it and one or more other segments

are to be displayed in the same or overlapping regions. The segment with
the higher priority will be displayed over the other segment(s).

process: Something which transforms data into other data according to a
specific set of rules. In the context of the system described by this
report, the major processes are the editor, the animator, and the code
generator.

programmer: In the context of the current method of creating displays, a
person knowledgeable in the programming of microprocessors who takes a
display designer's drawing and writes a computer program to implement it
as a display. In the context of the system described in this report,
either a person who manually converts the formal display description into
the executable display description or a person who writes the general

data-gathering and entity-drawing subprograms for a particular target

display device.

rjal -UM: The ability to respond to changes in the environment within a
suitably small period of time after the change.

resolution: The extent to which a display screen can accurately display an
arbitrarily complex or small object, which is usually a function of the
number and size of the pixels that make up the display screen.

sLauraLtin: The portion of chromaticity that specifies the proportion of pure
chromatic (as opposed to achromatic - white, gray, black) light in the
total light emitted or reflected from a surface.

agrj=n: The physical device to which the display is mapped. Examples of
screens include cathode ray tubes, liquid crystal displays, etc.

mIAL: An element of the display design hierarchy. It is composed of
entities, icons, subsegments, Invocations of modules, attributes, and

dynamic controls.

- 66 -

Aarlsia numbr: A number used to differentiate segments.

A bL±=: When used in the context of a hierarchical structure, such as
segments nested within other segments, two objects which are children of
the same parent are termed "siblings.w

ha Lt&: To execute the display design on the system in such a manner as to
make the display behave the same as it would on the target display
device, allowing the designer to evaluate the display design.

&C.L g ~aR&" dny1a: The microprocessor-controlled equipment located in the
target environment which will visually map input data values representing
the state of the environment onto a display screen in accordance with the
executable display description executing on it.

LArg" nirnnt: The location where the target display device will be used
to rapidly and efficiently convey information describing the environment
to a display user. Examples of target environmentb include aircraft,
ships, factories, etc.

teaL da&t1: The data that simulates the data input to the target display
device in the final environment. The test data are used by the animator
portion of the system as the source of inputs used to drive the display
design in the test phase of the display creation process.

k£an _sX: The attribute that specifies to what extent the viewer will be
able to see through an object to observe objects that are hidden behind
it.

ia& raL: The rate at which a segment is redrawn using new input data
values.

Uar: The display designer or any other person using the system.

Uaar-dAfid ML": An entity which was not provided with the original
system but was created (usually by a maintenance programer) to represent
a complex object or concept not readily represented by the entities
provided by the system. An example would be a particular representation
of a three-dimensional view of the terrain.

lALJAJ1kg ±nmL daxLw: A device such as a potentiometer or slide which allows
a designer to inorementally change input data values during the
evaluation of a display design.

1LMaz: The display user who visually gathers the information presented on
the display screen by the target display device.

- 67 -

APPENDIX B

DETAILED OPERATIONAL SCENARIO: CREATING AN EXAMPLE DISPLAY

B.1 Introduction

This appendix describes the creation of an example display. This example
will not be very detailed because much of the detail depends on the actual
implementation of the system. We will assume the system is implemented along
the lines as described in Section 3, but we will not assume any particular
graphics terminal or computer-aided design package.

This example will not show every feature of the system. It will provide
the reader with an overview on how many of the capabilities may be used to
create a useful display design. The particular design shown below is possibly
neither optimal nor desirable; it is for illustrative purposes only.

B.2 Sketching the Display

The first stop is to decide what information is to be pictured. We will
create here a display for depicting the levels of three fluids: fuel, oil,
and coolant in a vehicle. We will display three items of information for
each. The level of each in absolute numbers will be shown numerically. The
level will also be shown as a fraction of the full capacity by the use of a
dial. A scale will be used to show the rate of loss of the fluid. If the
level drops below a certain threshold or the rate of loss climbs above another
threshold, the entire display for that fluid will start to blink to draw
attention to the problem. The final display will appear as in Figure B-1.

We will assume that the space allocated for the display is 2 inches by 4
inches so that each separate gauge has a space of 2 by 1-1/3 inches.

B.3 Determining the Display Parameters

After the bus concept Is sketched out, the next step is to identify the
inputs which will be needed. In this particular example, the inputs are the
level and the rate of loss of each fluid. The latter Information ould be
caloulated internally within the display subsystem, but we will assume that it

- 60 -

FUEL OIL COOLANT

OL 4. 1 0-(:7 1 or 1"

Figure B-1 The Fluid Status Display

is not for simplicity. We will nome the fluid parameters 'FUELLEVEL',
'OILEVEL', 'COOLANT_LEVEL', 'IFUEFLOSS', 'OILLOS', and 'COOLANTLOSS'. We
will also assume that all levels are measured in gallons and that losses are
measured in gallons per hour or per hundred hours.

B.4 Partitioning the Design

Next the display design should be partitioned into modules and segments.
Since each set of gauges is to be alike, we will create a generic gauge module
to show all three fluids. Then we will invoke this gauge module three times,
once for each different fluid.

B.5 The Gauge Nodule

As mentioned in Section 2 of the report, every module has a defined set
of inputs. Two of the inputs needed are the fluid level and rate of loss,
named 'FLUID.ZVEL' and 'FLUIDJO'SS, respectively. Also, the gauge module
needs to know the various thresholds mentioned above. These will be named
'MAXLIVI', 'NINACC3PTABILLVRL', and 'IHAACCKPTABLLLOS'. These will be
specified by the designer when he creates the module.

The gauge module oan be partitioned further by determining the various
dynamic elements. The needle vIll be rotated, so it should be in its own
segment. The numeric value should have its own segment so that it may be
displayed at a specified location on the screen. Finally, the scale will be
Implemented by resealing a unit rectangle along the appropriate axis, thus it
will also need to have its own segment.

- 69-

In the next several sections, we will show how the gauge module can be
designed using the system. Assume that all lines not otherwise specified are
solid and white on a black background.

B.5.1 Segment 1.0

Segment 1.0 is at the top level of the module. It will contain two
distinct items. One Is the skeleton for the three gauges as shown in Figure
B-2. The other is the set of commands controlling the blinking of the
display.

0(

Figure B-2 Segment 1.0

To create the gauge outlines, the designer enters the graphics editor and
performs the following sequence:

1 1. The designer places the origin as marked above by a cross in a
*small circle at the center of the figure. This special cross

and circle will not actually be drawn in the final display.

2. He commands the system to draw a semi-circle, fixes the center
at the origin, and specifies that the radius will be 7/16 of an
inch. This command might be in the form of pointing to a
picture of an are, pointing to a place for the origin, and
enterina the radius using the keyboard.

3. He placed the tick marks on the arc by drawing a line from the
the center to the arc and erasing all but 1/16 inch of the line.

- 70 -

4. Possibly using a menu, he commands the system to draw text and

puts in the 0, 1/2, and 1 markings as shown.

5. He moves the cursor down 1/8 inch from the center of reference
and to the left 3/8 inch, commands the system to draw a box,
fixes the upper left corner, drags the cursor down to the
desired position for the lower right corner, and fixes this as
well so that the box is 3/4 inch long by 1/4 inch high.

6. He does a similar operation to create the lower box.

7. He places triangles at the top and bottom of the center of this
second box to mark the maximum acceptable loss.

This completes the skeleton of the gauges at the Segment 1.0 level.

Now he must specify that the Segment 1.0 (and therefore all other
segments) are to blink under certain conditions. He specifies that if
FLUIDLEVEL is less than MINACCEPTABLELEVEL or if the FLUID_LOSS is greater
than MAXJACCEPTABLE_LOSS, then the segment is to blink at the medium rate.
This completes the definition of Segment 1.0.

B.5.2 Segment 1.1

The needle will be placed in this segment. First the designer specifies
that Segment 1.0 is shoving to provide a reference. Next the designer selects
the appropriate needle icon from the library. Assume this icon is 1 inch long
by 1/4 inch wide. The designer shrinks the needle so that it is just short of

the '0' tick mark. This is the rest position of the needle. The designer
then uses the dynamics editor to specify the rotation of the needle by an arc-
like dynamics icon from the rest position to the other end of the scale. He
then specifies that the rest position occurs when FLUID LEVEL - 0 while the
other end of the scale occurs when FLUID LEVEL - MAX LEVEL. The dynamics
editor will determine that the rotation of Segment 1.1 is to be [(FLUIDLEVEL
/ MAX-LEVEL) * -180] degrees.

B.5.3 Segment 1.2

Before defining Segment 1.2, the designer specifies that Segment 1.1 will

not show to reduce the clutter on the screen while editing 1.2. The numeric
value of FLUID_LEVEL will be displayed in the box in this level by specifying

that it is to be displayed centered in a field with five spaces. No comas or

signs are to be displayed. Two places after the decimal point are to be

displayed. All of this is specified using the dynsuscs editor.

The position at which the data will be displayed will be the segment's
origin. Therefore, the designer uses the dynmics editor to specify that the
origin for Segment 1.2 is to be translated down and to the left so that it is

Just above the bottom line of the box and just to the right of the left line.

The data will be centered in the five spaces to the right.

- 71 -

B.5.4 Segment 1.3

Finally, in Segment 1.3, the rate of loss of the fluid will be shown on
the bar. The designer again requests that Segment 1.0 be shown along with
Segment 1.3. he then positions the cursor just inside the line at the middle
of the left-hand side of the bottom box, expanding the image as necessary to
achieve accuracy. This point will become the origin for the segment.

Selecting the color yellow, he defines a box which is Just inside the
outer one and specifies that this box is to be filled in with a solid pattern.
Next he enters the dynamics editor to specify that the yellow box is to be
re-scaled along the x-axis. The rest position is when FLUID LOSS /
MAX ACCEPTABLELOSS - 2 and the yellow box decreases to a thin yellow line When
FLUID LOSS - 0. The dynamics editor will then determine that Segment 1.3 is co

be scaled along the x-axis by FLUID LOSS / (MAX ACCEPTABLE LOSS * 2) when
this is between 0 and 1, and that if FLUID LOSS -0 a line is to be drawn. The!
yellow box will never go outside of the outer white box.Note that it will reach
the halfway triangular markers when the loss is barely acceptable.

The dynamics editor also determines that the origin of this segment is to
be constantly placed upon the left edge of the white box as defined above.

B.6 The Top Level Module

Once the above gauge module is defined, the next step is to create another
module with inputs FUELLEVEL, OILLEVEL, COOLANTLEVEL, FUELLOSS, OILLOSS,
and COOLANTLOSS.

B6.1 Segment 1.0

Pe The origin will be the center of the 2-by-4-inch space. This segment will
also be split into three subsegments, with one for each gauge. In the Segment
1.0, the designer will place the words Fuel', Oil', and Coolant' so that
each is centered above the area where the gauges will be placed.

B.6.2 Segment 1.1

Segment 1.1 will be the left-most gauge which shows the fuel information.
The designer specifies that the origin will be to the left of the Segment 1.0
origin by I and 1/8 inches. Using the dynamics editor, the designer then
specifies that the Gauge module be invoked. The parameters are associated so
that FLUID _ LEVEL a FUEL _ LEVEL, FLUIDLOSS, MAXLEVEL = 100.0,
MIN ACCEPTABLELEVEL = 1.0, and MAX ACCEPTABLELOSS = 1.0 gallons per hour.

-72-

S~ .r% * * *1111R *%...

B.6.3 Segment 1.2

Segment 1.2 will be the center gauge showing information about the oil
level. It does not need transformation from its original position. In this
instance, the Gauge module is invoked with FLUID_LEVEL = OIL..LEVEL, FLUID_LOSS

OIL_.LOSS, MAX.LEVEL - 10.0, MINACCEPTABLELLEVEL 6.0, and
MAYLACCEPTABLFLOSS = 0.1 gallons per one hundred hours.

B.6.4 Segment 1.3

Finally, Segment 1.3 will be the right-most gauge showing the coolant
level and loss. Its origin will be 1 and 1/8 inches to the right of Segment
1.0's. The designer specifies that it also invokes the Gauge module with
FLUID_--- LEVEL = COCLANTLEVEL, FLUID_LOSS = COOLANT-LOSS, MAJ"LEVEL = 10.0,
MINLACCEPTABLELLEVEL z 8.0, and MA _ACCEPTABLF,_LOSS = 0.05 gallons per one
hundred hours.

B.7 Conclusion

The above example shows how a designer can create a simple, two-
dimensional display. This display shows the usage of nested nodules and
segments to a limited extent. It also shows the usage of the capabilities of
the graphics and dynamics editors. It is hoped that this appendix leaves the
reader with a firmer understanding of the use of an implemented syste.

Is ytm

APPENDIX C

COMPUTER-AIDED DESIGN PACKAGE AND HARDWARE SURVEY RESULTS

C.1 Introduction

In Section 3 of the attached report, we present recommendations for

partitioning the system into pieces which use nondevelopmental components to

reduce the effort required for system implementation. This partitioning is

bdsed on the use of commercial computer hardware and computer-aided design

packages. We performed a preliminary survey of the available technology to

determine if products exist which fit the need. The purpose of this survey

was not to find the absolutely best product, but to determine if our

recommendations are feasible. In this appendix, we present this preliminary

. survey of the commercial technology currently available and how each product
may or may not fit the need.

* C.1.1 The Hardware

As mentioned in the report, the hardware must be capable of matching or
surpassing the performance of current target display devices. This means that
the graphics terminal and the host to which it is linked must provide both

power and speed. The need for the ability to support almost any display
design means that many colors must be available. The need for speed means
that the graphic transformations and other operations must be performed in

hardwarc. By limiting or not limiting the display designs, the choice of the
graphics terminal and host will determine the success of the implemented

system.

C.I.2 The Software

It Is equally important that the system be easy to use. From this
:.tandpolnit, the choice of the computer-aided design (CAD) package will

* determir, the system's success. The CAD package must meet the following
',riterla:

- 74 -

1. It must be very easy to use.

a. The terminology must not be targeted toward a
draftsman.

b. All information must be prompted so the user need not
memorize when and what to enter.

c. On-line help must be available at all times.

2. It must be open ended.

a. It must be possible to access the data base.

b. It must be possible to integrate custom software.

3. It must support all display designs.

a. All entities must be supported.
b. All attributes must be supported.
c. It must be able to support the display hierarchy.

C.2 The Survey

A comprehensive survey was not part of the contractually prescribed
effort for this project. We made a preliminary survey to determine if any
systems which meet the above requirements do indeed exist. Below we present
those which meet the need. We also present those which come close but do not

'I. meet the need.

This survey is based on information as of the fall of 1985. Where many
of the manufacturers do not currently supply a product which fits the needs,
they will likely announce equipment surpassing the need in the near future.
The state- of- the art in computer technology is rapidly changing, and any
report which attempts to assess the technology becomes dated before being
published, even when all products have been examined. Assessment is even less
possible when the survey is not exhaustive.

We have not attempted to list all of the features of the various
products, but have selected those which are the most important to this system.
Many have advantages which make them very attractive for other applications.
However, in the interests of saving space, we will focus on only those
aabilitles for which we have demonstrated a need in the report. Also, many

4endors produce various models of differing capacity. Where these models are
.,4,. v'nt except for memory size, disk storage size, or expansibility, we

or , 1 1y that model which will best fit the need.

- 75 -

IiWi-

C.2 (.ahi erminalf

Several graphics terminal products were invesisgated These ink Iude the

Megatek 315S, the Silicon Graphics IRIS Z400 Turbo, Mas(omp'* line,

Calcomp's Vistagrapbih 4 OXT, Spettragraphicu' DesignSet 1000, Fvans &

Sutherland's 'S 700 aid PS 340, and the Tektronix 412 . Of these, ,rilv three
mention high-speed filled polygons in three dimensions in the Iitetature we

* received and in person-to-person tonsultat ion*: Megatek , Ii] on (,raphi .,

and Spectragraphics. The I iI'V provides 14 colors In ,louLle-bu! ffertd &d.

while the IRIS 2400(J and iehisnSet lU(00 provide 4096 11i double-bu ffe tvd m)de
Tb e !RI; 2400 transforms vectors at W, 000 per second while the)empign',et "JO)

transforms 1000 per se(ond.

C.2.2 Host Computers

Many of the above graphics terminals interface with Digital's VAJ(line 4-f

_ products. The MicroVAX II would fulfill the needs of this saotem. (me ., f

the above terminals provide the host computer capabilities an well. Thit 1%

particilarly true for the IRIS 2400 and the DecignSet 3000.

C.2.3 Other CAD Packages
-1

Many CAD packages exist for all of the above computers and graphics

. terminals. We examined Applicon's BRAVO!, Autotrol's Series 5000, (ALMA,

FARB, MCS's Anvil 4000, Medusa, Palette, Template, Tawvir' SUPERCADS,

Unicad's M/P/E, and Unigraphics. Palette, Anvil 4000, and Template will ru

* on many computers. Palette runs on the Tektronix line as well as otherb while

* Anvil 4000 and Template run on the Megatek, Tektronix, and other lines. More

products are supported by these every year. Tasvir and lnicad have products

which run on the Silicon Graphic's IRIS 2400 Turbo. Unicad and Template are

very flexible, allowing a programmer to redesign the interface at will.

Palette sells an Independent Program Interface which allows any program to

send to Palette any command which can be entered by the user, providing not

* only a very flexible interface but also allowing its graphics drawing

capabilities to be used wherever needed. The Anvil 4000's interface Is geared

specifically to the draftsman, but the prompts will be modifiable in the Anvil

5000 system expected to be announced in the spring of 1986.

C.3 Conclusion

Even without an exhaustive survey, products exist which fit the needs

stated in the report. Since fewer graphics terminals exist which provide all

of the capabilities, the focus should be on selection of a graphics terminal

before selection of a host computer and a computer-aided design package.

However, the final choices must fulfill all needs, and so the availability of
suitable software should be equally important.

-76-

APPENDI11

AN ASSSEINT OF GRADS

As mentioned Irn the body of the report, the f ormalI design should be
'e rilted using a high-level programming language. for many reasons outlined
ir. L;@tlo j.2.2, we :-uggest the choice of Ada for tbis language. At one time
-another language won thought tW be the beat choice: the Graphics Real-time
Applications Lispiay -Support (GRADS) language. However, further analysis
3hows that It would not be an suitable an previously supposed. We present our
reasons ror our claim ir this appendix.

This assessment is based upon the following readings:

1. filo MKI2Z WU.Ls. IN-MA- 198- 1, 15 April 1983, Revision 01,
Intermetrics, Inc., Cambridge, MA,

2. "L jab"Ara.ry MA~R".~ Qi~A, IR-KA-249, 23 September 1983,
Intormetrics, Inc., Cambridge, MA, and

3. Mig Z=A~dMA4 QZL= fLa~l" Inasrfaaa (Preliminary), IR-258-5, January
1983, Intermetrics, Inc., Cambridge, MA.

* Before presenting the advantages and disadvantages of using GRADS for the
formal display description, we will first briefly describe the GRADS
environment.

D.2 A Description of GRADS

GRADS is a high-level, structured programming language specifically
designed for drawing graphic images in a real-time environment. It provides
commands for creating fundamental shapes such as arcs, lines, circles, and
squares in both two and three dimensions. It also provides the basic control
structures found in any programming language: sequential flow, conditional
control, and repetitive looping to facilitate the developmnt of well-
organized code. Furthermore, it providea an interface to the host computer to
allow dyramic updates of the data upon which a graphic image is based. The
definition of GRADS consists of:

- 77-

1. the GRADS programming language,
2. the GRADS ,omtiler, and

. the tandard GRAPS Display Interface, SGDI.

A desired graphics display is implemented by compiling the GRADS source code
to create two outputs: 1) a display program for the target device's
microprocessor, and 2) a subprogram which allows the data-acquisition computer
to make changes in a display's parameters.

The instruction set for the program which is executed by the display
subsystem is defined by SGDI. This set provides a virtual interface between
the GRADS language and the actual hardware. The manufacturers of a particular

*piece of equipment are free to implement the drawing of entities in any manner
*th.ey choose as long as they interpret the instructions according to the SGDI.

D_4 The Advantages of GRADS

The primary advantage of GRADS i that it provides a means of programming
a graphics machine without the user needing to be familiar with the specific
features of the target hardware. Essentially every graphics device has its
own instruction set, and the programmer must relearn how to draw images
whenever he moves to a new one. GRADS would eliminate this relearning. GRADS
would also eliminate the need to rewrite software when a program is
transferred from one display device to another. Hence the design of GRADS
provides a potential for portability of techniques and software. However, it
will be shown in Section D.4 that this portability is not fully realized.

Another advantage of GRADS, this time over Ada, is that an interpreter
which implements the SGDI is much simpler to write than an Ada compiler.
Hence, in those situations in which an Ada compiler is not available, GRADS
would be preferable. However, as Ada becomes more prevalent in the industry,
Ada compilers will be available for every type of computer, in particular
those which are embedded in the target display device3.

D.3.1 Sumilar Alternatives

GRADS is not the only specification available which provides a potential

for portability. The Association of Computing Machinery Special Interest
Group on Computer Graphics (ACM/SIGGRAPH) has specified a standard known as
Core. Also, the International Ztandards Organization (ISO) has created
another standard: the Graphical Kernel System (GKS). While these standards

- and others like them are not full programming languages, they could be used in
the system. However, they have been designed for all graphics applications,

PIN with the result that they are too general to be used in a real-time
environment. From this we extract a second advantage of GRADS: optimization
towards speed.

Hence the primary advantages of GRADS lie in potential portability and in
speed. Since these effectively summarize the requirements for the display
description, GRADS should be the ideal choice.

- 78 -

I''A
-B *P, .J.

D.4 The Disadvantages of GRADS.

However, due to a lack of support by target device vendors, GRADS is
effectively non-portable. To be portable, a system must be defined in such a
way that it is not dependent upon the particulars of any one device and it
must also be supported by a large number of computers and graphics terminals.
GRADS is limited because while one vendor produces graphics terminals which
support a subset of GRADS, to our knowledge no one else is planning to design
other such terminals. For GRADS to become a standard, a large portion of the
graphics terminal industry would need to produce supporting products.

Also, most programmers are not familiar with the GRADS language. Even
though learning a new language is not difficult, it does take time. Since
programmers do not stay long on a particular project at many of the facilities
where the system would be used, time spent training new programmers ib very
significant.

Finally, Ada has been mandated by the Department of Defense for use in
embedded systems; however, GRADS is not based on the Ada lI!nguage. Because of
this mandate, use of GRADS would require proof that it is much more suitable
than Ada for this application.

D.5 Conclusion

While GRADS has its advantages, these are outweighed by the advantages of

using Ada for the formal display description. The use of Ada would allow the
use of comercially available compilers whereas GRADS would require the
development of an interpreter for each installation. Finally, programmers are
or will be more familiar with the Ada language whereas use of GRADS would
require training. These factors show that while GRADS would be a reasonable
language for use in thiL application, Ada is the best choice for ust in the
formal display description.

79

me m mn n n ut n u u nunn m m : .. I -- ,;, •t

7w IMF-"am"

